实现LRU淘汰算法

LRU 缓存算法是一个十分经典的算法,在很多面试中常常问道,不仅仅包含前端面试

LRU 英文全称是 Least Recently Used,英译过去就是” 最近起码应用 “的意思。LRU 是一种罕用的页面置换算法,抉择最近最久未应用的页面予以淘汰。该算法赋予每个页面一个拜访字段,用来记录一个页面自上次被拜访以来所经验的工夫 t,当须淘汰一个页面时,抉择现有页面中其 t 值最大的,即最近起码应用的页面予以淘汰

艰深的解释:

如果咱们有一块内存,专门用来缓存咱们最近发拜访的网页,拜访一个新网页,咱们就会往内存中增加一个网页地址,随着网页的一直减少,内存存满了,这个时候咱们就须要思考删除一些网页了。这个时候咱们找到内存中最早拜访的那个网页地址,而后把它删掉。这一整个过程就能够称之为 LRU 算法

上图就很好的解释了 LRU 算法在干嘛了,其实非常简单,无非就是咱们往内存外面增加或者删除元素的时候,遵循最近起码应用准则

应用场景

LRU 算法应用的场景十分多,这里简略举几个例子即可:

  • 咱们操作系统底层的内存治理,其中就包含有 LRU 算法
  • 咱们常见的缓存服务,比方 redis 等等
  • 比方浏览器的最近浏览记录存储
  • vue中的keep-alive组件应用了LRU算法

梳理实现 LRU 思路

  • 特点剖析:

    • 咱们须要一块无限的存储空间,因为有限的化就没必要应用LRU算发删除数据了。
    • 咱们这块存储空间外面存储的数据须要是有序的,因为咱们必须要程序来删除数据,所以能够思考应用 ArrayMap 数据结构来存储,不能应用 Object,因为它是无序的。
    • 咱们可能删除或者增加以及获取到这块存储空间中的指定数据。
    • 存储空间存满之后,在增加数据时,会主动删除工夫最长远的那条数据。
  • 实现需求:

    • 实现一个 LRUCache 类型,用来充当存储空间
    • 采纳 Map 数据结构存储数据,因为它的存取时间复杂度为 O(1),数组为 O(n)
    • 实现 getset 办法,用来获取和增加数据
    • 咱们的存储空间有长度限度,所以无需提供删除办法,存储满之后,主动删除最长远的那条数据
    • 当应用 get 获取数据后,该条数据须要更新到最后面

具体实现

class LRUCache {  constructor(length) {    this.length = length; // 存储长度    this.data = new Map(); // 存储数据  }  // 存储数据,通过键值对的形式  set(key, value) {    const data = this.data;    if (data.has(key)) {      data.delete(key)    }    data.set(key, value);    // 如果超出了容量,则须要删除最久的数据    if (data.size > this.length) {      const delKey = data.keys().next().value;      data.delete(delKey);    }  }  // 获取数据  get(key) {    const data = this.data;    // 未找到    if (!data.has(key)) {      return null;    }    const value = data.get(key); // 获取元素    data.delete(key); // 删除元素    data.set(key, value); // 从新插入元素    return value // 返回获取的值  }}var lruCache = new LRUCache(5);
  • set 办法:往 map 外面增加新数据,如果增加的数据存在了,则先删除该条数据,而后再增加。如果增加数据后超长了,则须要删除最长远的一条数据。data.keys().next().value 便是获取最初一条数据的意思。
  • get 办法:首先从 map 对象中拿出该条数据,而后删除该条数据,最初再从新插入该条数据,确保将该条数据挪动到最后面
// 测试// 存储数据 set:lruCache.set('name', 'test');lruCache.set('age', 10);lruCache.set('sex', '男');lruCache.set('height', 180);lruCache.set('weight', '120');console.log(lruCache);

持续插入数据,此时会超长,代码如下:

lruCache.set('grade', '100');console.log(lruCache);

此时咱们发现存储工夫最久的 name 曾经被移除了,新插入的数据变为了最后面的一个。

咱们应用 get 获取数据,代码如下:

咱们发现此时 sex 字段曾经跑到最后面去了

总结

LRU 算法其实逻辑十分的简略,明确了原理之后实现起来十分的简略。最次要的是咱们须要应用什么数据结构来存储数据,因为 map 的存取十分快,所以咱们采纳了它,当然数组其实也能够实现的。还有一些小伙伴应用链表来实现 LRU,这当然也是能够的。

将虚构 Dom 转化为实在 Dom

{  tag: 'DIV',  attrs:{  id:'app'  },  children: [    {      tag: 'SPAN',      children: [        { tag: 'A', children: [] }      ]    },    {      tag: 'SPAN',      children: [        { tag: 'A', children: [] },        { tag: 'A', children: [] }      ]    }  ]}把下面虚构Dom转化成下方实在Dom<div id="app">  <span>    <a></a>  </span>  <span>    <a></a>    <a></a>  </span></div>

实现

// 真正的渲染函数function _render(vnode) {  // 如果是数字类型转化为字符串  if (typeof vnode === "number") {    vnode = String(vnode);  }  // 字符串类型间接就是文本节点  if (typeof vnode === "string") {    return document.createTextNode(vnode);  }  // 一般DOM  const dom = document.createElement(vnode.tag);  if (vnode.attrs) {    // 遍历属性    Object.keys(vnode.attrs).forEach((key) => {      const value = vnode.attrs[key];      dom.setAttribute(key, value);    });  }  // 子数组进行递归操作  vnode.children.forEach((child) => dom.appendChild(_render(child)));  return dom;}

实现一个迭代器生成函数

ES6对迭代器的实现

JS原生的汇合类型数据结构,只有Array(数组)和Object(对象);而ES6中,又新增了MapSet。四种数据结构各自有着本人特地的外部实现,但咱们仍期待以同样的一套规定去遍历它们,所以ES6在推出新数据结构的同时也推出了一套 对立的接口机制 ——迭代器(Iterator)。

ES6约定,任何数据结构只有具备Symbol.iterator属性(这个属性就是Iterator的具体实现,它实质上是以后数据结构默认的迭代器生成函数),就能够被遍历——精确地说,是被for...of...循环和迭代器的next办法遍历。 事实上,for...of...的背地正是对next办法的重复调用。

在ES6中,针对ArrayMapSetStringTypedArray、函数的 arguments 对象、NodeList 对象这些原生的数据结构都能够通过for...of...进行遍历。原理都是一样的,此处咱们拿最简略的数组进行举例,当咱们用for...of...遍历数组时:

const arr = [1, 2, 3]const len = arr.lengthfor(item of arr) {   console.log(`以后元素是${item}`)}
之所以可能按程序一次一次地拿到数组里的每一个成员,是因为咱们借助数组的Symbol.iterator生成了它对应的迭代器对象,通过重复调用迭代器对象的next办法拜访了数组成员,像这样:
const arr = [1, 2, 3]// 通过调用iterator,拿到迭代器对象const iterator = arr[Symbol.iterator]()// 对迭代器对象执行next,就能一一拜访汇合的成员iterator.next()iterator.next()iterator.next()

丢进控制台,咱们能够看到next每次会按程序帮咱们拜访一个汇合成员:

for...of...做的事件,根本等价于上面这通操作:
// 通过调用iterator,拿到迭代器对象const iterator = arr[Symbol.iterator]()// 初始化一个迭代后果let now = { done: false }// 循环往外迭代成员while(!now.done) {    now = iterator.next()    if(!now.done) {        console.log(`当初遍历到了${now.value}`)    }}
能够看出,for...of...其实就是iterator循环调用换了种写法。在ES6中咱们之所以可能开心地用for...of...遍历各种各种的汇合,全靠迭代器模式在背地给力。

ps:此处举荐浏览迭代协定 (opens new window),置信大家读过后会对迭代器在ES6中的实现有更深的了解。

实现深拷贝

简洁版本

简略版:

const newObj = JSON.parse(JSON.stringify(oldObj));

局限性:

  • 他无奈实现对函数 、RegExp等非凡对象的克隆
  • 会摈弃对象的constructor,所有的构造函数会指向Object
  • 对象有循环援用,会报错

面试简版

function deepClone(obj) {    // 如果是 值类型 或 null,则间接return    if(typeof obj !== 'object' || obj === null) {      return obj    }    // 定义后果对象    let copy = {}    // 如果对象是数组,则定义后果数组    if(obj.constructor === Array) {      copy = []    }    // 遍历对象的key    for(let key in obj) {        // 如果key是对象的自有属性        if(obj.hasOwnProperty(key)) {          // 递归调用深拷贝办法          copy[key] = deepClone(obj[key])        }    }    return copy} 
调用深拷贝办法,若属性为值类型,则间接返回;若属性为援用类型,则递归遍历。这就是咱们在解这一类题时的外围的办法。

进阶版

  • 解决拷贝循环援用问题
  • 解决拷贝对应原型问题
// 递归拷贝 (类型判断)function deepClone(value,hash = new WeakMap){ // 弱援用,不必map,weakMap更适合一点  // null 和 undefiend 是不须要拷贝的  if(value == null){ return value;}  if(value instanceof RegExp) { return new RegExp(value) }  if(value instanceof Date) { return new Date(value) }  // 函数是不须要拷贝  if(typeof value != 'object') return value;  let obj = new value.constructor(); // [] {}  // 阐明是一个对象类型  if(hash.get(value)){    return hash.get(value)  }  hash.set(value,obj);  for(let key in value){ // in 会遍历以后对象上的属性 和 __proto__指代的属性    // 补拷贝 对象的__proto__上的属性    if(value.hasOwnProperty(key)){      // 如果值还有可能是对象 就持续拷贝      obj[key] = deepClone(value[key],hash);    }  }  return obj  // 辨别对象和数组 Object.prototype.toString.call}
// testvar o = {};o.x = o;var o1 = deepClone(o); // 如果这个对象拷贝过了 就返回那个拷贝的后果就能够了console.log(o1);

实现残缺的深拷贝

1. 简易版及问题

JSON.parse(JSON.stringify());
预计这个api能笼罩大多数的利用场景,没错,谈到深拷贝,我第一个想到的也是它。然而实际上,对于某些严格的场景来说,这个办法是有微小的坑的。问题如下:
  1. 无奈解决循环援用的问题。举个例子:
const a = {val:2};a.target = a;
拷贝a会呈现零碎栈溢出,因为呈现了有限递归的状况。
  1. 无奈拷贝一些非凡的对象,诸如 RegExp, Date, Set, Map
  2. 无奈拷贝函数(划重点)。

因而这个api先pass掉,咱们从新写一个深拷贝,简易版如下:

const deepClone = (target) => {  if (typeof target === 'object' && target !== null) {    const cloneTarget = Array.isArray(target) ? []: {};    for (let prop in target) {      if (target.hasOwnProperty(prop)) {          cloneTarget[prop] = deepClone(target[prop]);      }    }    return cloneTarget;  } else {    return target;  }}

当初,咱们以刚刚发现的三个问题为导向,一步步来欠缺、优化咱们的深拷贝代码。

2. 解决循环援用

当初问题如下:

let obj = {val : 100};obj.target = obj;deepClone(obj);//报错: RangeError: Maximum call stack size exceeded

这就是循环援用。咱们怎么来解决这个问题呢?

创立一个Map。记录下曾经拷贝过的对象,如果说曾经拷贝过,那间接返回它行了。
const isObject = (target) => (typeof target === 'object' || typeof target === 'function') && target !== null;const deepClone = (target, map = new Map()) => {   if(map.get(target))      return target;   if (isObject(target)) {     map.set(target, true);     const cloneTarget = Array.isArray(target) ? []: {};     for (let prop in target) {       if (target.hasOwnProperty(prop)) {           cloneTarget[prop] = deepClone(target[prop],map);       }     }     return cloneTarget;   } else {     return target;   } }

当初来试一试:

const a = {val:2};a.target = a;let newA = deepClone(a);console.log(newA)//{ val: 2, target: { val: 2, target: [Circular] } }
如同是没有问题了, 拷贝也实现了。但还是有一个潜在的坑, 就是map 上的 key 和 map 形成了强援用关系,这是相当危险的。我给你解释一下与之绝对的弱援用的概念你就明确了

在计算机程序设计中,弱援用与强援用绝对,

被弱援用的对象能够在任何时候被回收,而对于强援用来说,只有这个强援用还在,那么对象无奈被回收。拿下面的例子说,map 和 a始终是强援用的关系, 在程序完结之前,a 所占的内存空间始终不会被开释。

怎么解决这个问题?

很简略,让 map 的 key 和 map 形成弱援用即可。ES6给咱们提供了这样的数据结构,它的名字叫WeakMap,它是一种非凡的Map, 其中的键是弱援用的。其键必须是对象,而值能够是任意的

略微革新一下即可:

const deepClone = (target, map = new WeakMap()) => {  //...}

3. 拷贝非凡对象

可持续遍历

对于非凡的对象,咱们应用以下形式来甄别:

Object.prototype.toString.call(obj);

梳理一下对于可遍历对象会有什么后果:

["object Map"]["object Set"]["object Array"]["object Object"]["object Arguments"]

以这些不同的字符串为根据,咱们就能够胜利地甄别这些对象。

const getType = Object.prototype.toString.call(obj);const canTraverse = {  '[object Map]': true,  '[object Set]': true,  '[object Array]': true,  '[object Object]': true,  '[object Arguments]': true,};const deepClone = (target, map = new Map()) => {  if(!isObject(target))     return target;  let type = getType(target);  let cloneTarget;  if(!canTraverse[type]) {    // 解决不能遍历的对象    return;  }else {    // 这波操作相当要害,能够保障对象的原型不失落!    let ctor = target.prototype;    cloneTarget = new ctor();  }  if(map.get(target))     return target;  map.put(target, true);  if(type === mapTag) {    //解决Map    target.forEach((item, key) => {      cloneTarget.set(deepClone(key), deepClone(item));    })  }  if(type === setTag) {    //解决Set    target.forEach(item => {      target.add(deepClone(item));    })  }  // 解决数组和对象  for (let prop in target) {    if (target.hasOwnProperty(prop)) {        cloneTarget[prop] = deepClone(target[prop]);    }  }  return cloneTarget;}

不可遍历的对象

const boolTag = '[object Boolean]';const numberTag = '[object Number]';const stringTag = '[object String]';const dateTag = '[object Date]';const errorTag = '[object Error]';const regexpTag = '[object RegExp]';const funcTag = '[object Function]';

对于不可遍历的对象,不同的对象有不同的解决。

const handleRegExp = (target) => {  const { source, flags } = target;  return new target.constructor(source, flags);}const handleFunc = (target) => {  // 待会的重点局部}const handleNotTraverse = (target, tag) => {  const Ctor = targe.constructor;  switch(tag) {    case boolTag:    case numberTag:    case stringTag:    case errorTag:     case dateTag:      return new Ctor(target);    case regexpTag:      return handleRegExp(target);    case funcTag:      return handleFunc(target);    default:      return new Ctor(target);  }}

4. 拷贝函数

  • 尽管函数也是对象,然而它过于非凡,咱们独自把它拿进去拆解。
  • 提到函数,在JS种有两种函数,一种是一般函数,另一种是箭头函数。每个一般函数都是
  • Function的实例,而箭头函数不是任何类的实例,每次调用都是不一样的援用。那咱们只须要
  • 解决一般函数的状况,箭头函数间接返回它自身就好了。

那么如何来辨别两者呢?

答案是: 利用原型。箭头函数是不存在原型的。
const handleFunc = (func) => {  // 箭头函数间接返回本身  if(!func.prototype) return func;  const bodyReg = /(?<={)(.|\n)+(?=})/m;  const paramReg = /(?<=\().+(?=\)\s+{)/;  const funcString = func.toString();  // 别离匹配 函数参数 和 函数体  const param = paramReg.exec(funcString);  const body = bodyReg.exec(funcString);  if(!body) return null;  if (param) {    const paramArr = param[0].split(',');    return new Function(...paramArr, body[0]);  } else {    return new Function(body[0]);  }}

5. 残缺代码展现

const getType = obj => Object.prototype.toString.call(obj);const isObject = (target) => (typeof target === 'object' || typeof target === 'function') && target !== null;const canTraverse = {  '[object Map]': true,  '[object Set]': true,  '[object Array]': true,  '[object Object]': true,  '[object Arguments]': true,};const mapTag = '[object Map]';const setTag = '[object Set]';const boolTag = '[object Boolean]';const numberTag = '[object Number]';const stringTag = '[object String]';const symbolTag = '[object Symbol]';const dateTag = '[object Date]';const errorTag = '[object Error]';const regexpTag = '[object RegExp]';const funcTag = '[object Function]';const handleRegExp = (target) => {  const { source, flags } = target;  return new target.constructor(source, flags);}const handleFunc = (func) => {  // 箭头函数间接返回本身  if(!func.prototype) return func;  const bodyReg = /(?<={)(.|\n)+(?=})/m;  const paramReg = /(?<=\().+(?=\)\s+{)/;  const funcString = func.toString();  // 别离匹配 函数参数 和 函数体  const param = paramReg.exec(funcString);  const body = bodyReg.exec(funcString);  if(!body) return null;  if (param) {    const paramArr = param[0].split(',');    return new Function(...paramArr, body[0]);  } else {    return new Function(body[0]);  }}const handleNotTraverse = (target, tag) => {  const Ctor = target.constructor;  switch(tag) {    case boolTag:      return new Object(Boolean.prototype.valueOf.call(target));    case numberTag:      return new Object(Number.prototype.valueOf.call(target));    case stringTag:      return new Object(String.prototype.valueOf.call(target));    case symbolTag:      return new Object(Symbol.prototype.valueOf.call(target));    case errorTag:     case dateTag:      return new Ctor(target);    case regexpTag:      return handleRegExp(target);    case funcTag:      return handleFunc(target);    default:      return new Ctor(target);  }}const deepClone = (target, map = new WeakMap()) => {  if(!isObject(target))     return target;  let type = getType(target);  let cloneTarget;  if(!canTraverse[type]) {    // 解决不能遍历的对象    return handleNotTraverse(target, type);  }else {    // 这波操作相当要害,能够保障对象的原型不失落!    let ctor = target.constructor;    cloneTarget = new ctor();  }  if(map.get(target))     return target;  map.set(target, true);  if(type === mapTag) {    //解决Map    target.forEach((item, key) => {      cloneTarget.set(deepClone(key, map), deepClone(item, map));    })  }  if(type === setTag) {    //解决Set    target.forEach(item => {      cloneTarget.add(deepClone(item, map));    })  }  // 解决数组和对象  for (let prop in target) {    if (target.hasOwnProperty(prop)) {        cloneTarget[prop] = deepClone(target[prop], map);    }  }  return cloneTarget;}

实现map办法

  • 回调函数的参数有哪些,返回值如何解决
  • 不批改原来的数组
Array.prototype.myMap = function(callback, context){  // 转换类数组  var arr = Array.prototype.slice.call(this),//因为是ES5所以就不必...开展符了      mappedArr = [],       i = 0;  for (; i < arr.length; i++ ){    // 把以后值、索引、以后数组返回去。调用的时候传到函数参数中 [1,2,3,4].map((curr,index,arr))    mappedArr.push(callback.call(context, arr[i], i, this));  }  return mappedArr;}

实现Array.of办法

Array.of()办法用于将一组值,转换为数组
  • 这个办法的次要目标,是补救数组构造函数Array()的有余。因为参数个数的不同,会导致Array()的行为有差别。
  • Array.of()基本上能够用来代替Array()new Array(),并且不存在因为参数不同而导致的重载。它的行为十分对立
Array.of(3, 11, 8) // [3,11,8]Array.of(3) // [3]Array.of(3).length // 1

实现

function ArrayOf(){  return [].slice.call(arguments);}

参考 前端进阶面试题具体解答

实现一下hash路由

根底的html代码:

<html>  <style>    html, body {      margin: 0;      height: 100%;    }    ul {      list-style: none;      margin: 0;      padding: 0;      display: flex;      justify-content: center;    }    .box {      width: 100%;      height: 100%;      background-color: red;    }  </style>  <body>  <ul>    <li>      <a href="#red">红色</a>    </li>    <li>      <a href="#green">绿色</a>    </li>    <li>      <a href="#purple">紫色</a>    </li>  </ul>  </body></html>

简略实现:

<script>  const box = document.getElementsByClassName('box')[0];  const hash = location.hash  window.onhashchange = function (e) {    const color = hash.slice(1)    box.style.background = color  }</script>

封装成一个class:

<script>  const box = document.getElementsByClassName('box')[0];  const hash = location.hash  class HashRouter {    constructor (hashStr, cb) {      this.hashStr = hashStr      this.cb = cb      this.watchHash()      this.watch = this.watchHash.bind(this)      window.addEventListener('hashchange', this.watch)    }    watchHash () {      let hash = window.location.hash.slice(1)      this.hashStr = hash      this.cb(hash)    }  }  new HashRouter('red', (color) => {    box.style.background = color  })</script>

实现apply办法

思路: 利用this的上下文个性。apply其实就是改一下参数的问题
Function.prototype.myApply = function(context = window, args) {  // this-->func  context--> obj  args--> 传递过去的参数  // 在context上加一个惟一值不影响context上的属性  let key = Symbol('key')  context[key] = this; // context为调用的上下文,this此处为函数,将这个函数作为context的办法  // let args = [...arguments].slice(1)   //第一个参数为obj所以删除,伪数组转为数组  let result = context[key](...args); // 这里和call传参不一样  // 革除定义的this 不删除会导致context属性越来越多  delete context[key];   // 返回后果  return result;}
// 应用function f(a,b){ console.log(a,b) console.log(this.name)}let obj={ name:'张三'}f.myApply(obj,[1,2])  //arguments[1]

实现单例模式

外围要点: 用闭包和Proxy属性拦挡
function proxy(func) {    let instance;    let handler = {        constructor(target, args) {            if(!instance) {                instance = Reflect.constructor(fun, args);            }            return instance;        }    }    return new Proxy(func, handler);}

对象数组如何去重

依据每个对象的某一个具体属性来进行去重
const responseList = [  { id: 1, a: 1 },  { id: 2, a: 2 },  { id: 3, a: 3 },  { id: 1, a: 4 },];const result = responseList.reduce((acc, cur) => {    const ids = acc.map(item => item.id);    return ids.includes(cur.id) ? acc : [...acc, cur];}, []);console.log(result); // -> [ { id: 1, a: 1}, {id: 2, a: 2}, {id: 3, a: 3} ]

数组去重办法汇总

首先:我晓得多少种去重形式

1. 双层 for 循环

function distinct(arr) {    for (let i=0, len=arr.length; i<len; i++) {        for (let j=i+1; j<len; j++) {            if (arr[i] == arr[j]) {                arr.splice(j, 1);                // splice 会扭转数组长度,所以要将数组长度 len 和下标 j 减一                len--;                j--;            }        }    }    return arr;}
思维: 双重 for 循环是比拟蠢笨的办法,它实现的原理很简略:先定义一个蕴含原始数组第一个元素的数组,而后遍历原始数组,将原始数组中的每个元素与新数组中的每个元素进行比对,如果不反复则增加到新数组中,最初返回新数组;因为它的工夫复杂度是O(n^2),如果数组长度很大,效率会很低

2. Array.filter() 加 indexOf/includes

function distinct(a, b) {    let arr = a.concat(b);    return arr.filter((item, index)=> {        //return arr.indexOf(item) === index        return arr.includes(item)    })}
思维: 利用indexOf检测元素在数组中第一次呈现的地位是否和元素当初的地位相等,如果不等则阐明该元素是反复元素

3. ES6 中的 Set 去重

function distinct(array) {   return Array.from(new Set(array));}
思维: ES6 提供了新的数据结构 Set,Set 构造的一个个性就是成员值都是惟一的,没有反复的值。

4. reduce 实现对象数组去反复

var resources = [    { name: "张三", age: "18" },    { name: "张三", age: "19" },    { name: "张三", age: "20" },    { name: "李四", age: "19" },    { name: "王五", age: "20" },    { name: "赵六", age: "21" }]var temp = {};resources = resources.reduce((prev, curv) => { // 如果长期对象中有这个名字,什么都不做 if (temp[curv.name]) { }else {    // 如果长期对象没有就把这个名字加进去,同时把以后的这个对象退出到prev中    temp[curv.name] = true;    prev.push(curv); } return prev}, []);console.log("后果", resources);
这种办法是利用高阶函数 reduce 进行去重, 这里只须要留神initialValue得放一个空数组[],不然没法push

实现reduce办法

  • 初始值不传怎么解决
  • 回调函数的参数有哪些,返回值如何解决。
Array.prototype.myReduce = function(fn, initialValue) {  var arr = Array.prototype.slice.call(this);  var res, startIndex;  res = initialValue ? initialValue : arr[0]; // 不传默认取数组第一项  startIndex = initialValue ? 0 : 1;  for(var i = startIndex; i < arr.length; i++) {    // 把初始值、以后值、索引、以后数组返回去。调用的时候传到函数参数中 [1,2,3,4].reduce((initVal,curr,index,arr))    res = fn.call(null, res, arr[i], i, this);   }  return res;}

二叉树深度遍历

// 二叉树深度遍历class Node {  constructor(element, parent) {    this.parent = parent // 父节点     this.element = element // 以后存储内容    this.left = null // 左子树    this.right = null // 右子树  }}class BST {  constructor(compare) {    this.root = null // 树根    this.size = 0 // 树中的节点个数    this.compare = compare || this.compare  }  compare(a,b) {    return a - b  }  add(element) {    if(this.root === null) {      this.root = new Node(element, null)      this.size++      return    }    // 获取根节点 用以后增加的进行判断 放右边还是放左边    let currentNode = this.root     let compare    let parent = null     while (currentNode) {      compare = this.compare(element, currentNode.element)      parent = currentNode // 先将父亲保存起来      // currentNode要不停的变动      if(compare > 0) {        currentNode = currentNode.right      } else if(compare < 0) {        currentNode = currentNode.left      } else {        currentNode.element = element // 相等时 先笼罩后续解决      }    }    let newNode = new Node(element, parent)    if(compare > 0) {      parent.right = newNode    } else if(compare < 0) {      parent.left = newNode    }    this.size++  }  // 前序遍历  preorderTraversal(visitor) {    const traversal = node=>{      if(node === null) return       visitor.visit(node.element)      traversal(node.left)      traversal(node.right)    }    traversal(this.root)  }  // 中序遍历  inorderTraversal(visitor) {    const traversal = node=>{      if(node === null) return       traversal(node.left)      visitor.visit(node.element)      traversal(node.right)    }    traversal(this.root)  }  // 后序遍历  posterorderTraversal(visitor) {    const traversal = node=>{      if(node === null) return       traversal(node.left)      traversal(node.right)      visitor.visit(node.element)    }    traversal(this.root)  }  // 反转二叉树:无论先序、中序、后序、层级都能够反转  invertTree() {    const traversal = node=>{      if(node === null) return       let temp = node.left       node.left = node.right       node.right = temp      traversal(node.left)      traversal(node.right)    }    traversal(this.root)    return this.root  }}

先序遍历

二叉树的遍历形式

// 测试var bst = new BST((a,b)=>a.age-b.age) // 模仿sort办法bst.add({age: 10})bst.add({age: 8})bst.add({age:19})bst.add({age:6})bst.add({age: 15})bst.add({age: 22})bst.add({age: 20})// 先序遍历// console.log(bst.preorderTraversal(),'先序遍历')// console.log(bst.inorderTraversal(),'中序遍历')// ![](http://img-repo.poetries.top/images/20210522214837.png)// console.log(bst.posterorderTraversal(),'后序遍历')// 深度遍历:先序遍历、中序遍历、后续遍历// 广度遍历:档次遍历(同层级遍历)// 都可拿到树中的节点// 应用访问者模式class Visitor {  constructor() {    this.visit = function (elem) {      elem.age = elem.age*2    }  }}// bst.posterorderTraversal({//   visit(elem) {//     elem.age = elem.age*10//   }// })// 不能通过索引操作 拿到节点去操作// bst.posterorderTraversal(new Visitor())console.log(bst.invertTree(),'反转二叉树')

实现有并行限度的 Promise 调度器

题目形容:JS 实现一个带并发限度的异步调度器 Scheduler,保障同时运行的工作最多有两个

addTask(1000,"1"); addTask(500,"2"); addTask(300,"3"); addTask(400,"4"); 的输入程序是:2 3 1 4 整个的残缺执行流程:一开始1、2两个工作开始执行500ms时,2工作执行结束,输入2,工作3开始执行800ms时,3工作执行结束,输入3,工作4开始执行1000ms时,1工作执行结束,输入1,此时只剩下4工作在执行1200ms时,4工作执行结束,输入4

实现代码如下:

class Scheduler {  constructor(limit) {    this.queue = [];    this.maxCount = limit;    this.runCounts = 0;  }  add(time, order) {    const promiseCreator = () => {      return new Promise((resolve, reject) => {        setTimeout(() => {          console.log(order);          resolve();        }, time);      });    };    this.queue.push(promiseCreator);  }  taskStart() {    for (let i = 0; i < this.maxCount; i++) {      this.request();    }  }  request() {    if (!this.queue || !this.queue.length || this.runCounts >= this.maxCount) {      return;    }    this.runCounts++;    this.queue      .shift()()      .then(() => {        this.runCounts--;        this.request();      });  }}const scheduler = new Scheduler(2);const addTask = (time, order) => {  scheduler.add(time, order);};addTask(1000, "1");addTask(500, "2");addTask(300, "3");addTask(400, "4");scheduler.taskStart();

树形构造转成列表(解决菜单)

[    {        id: 1,        text: '节点1',        parentId: 0,        children: [            {                id:2,                text: '节点1_1',                parentId:1            }        ]    }]转成[    {        id: 1,        text: '节点1',        parentId: 0 //这里用0示意为顶级节点    },    {        id: 2,        text: '节点1_1',        parentId: 1 //通过这个字段来确定子父级    }    ...]

实现代码如下:

function treeToList(data) {  let res = [];  const dfs = (tree) => {    tree.forEach((item) => {      if (item.children) {        dfs(item.children);        delete item.children;      }      res.push(item);    });  };  dfs(data);  return res;}

二叉树搜寻

// 二叉搜寻树class Node {  constructor(element, parent) {    this.parent = parent // 父节点     this.element = element // 以后存储内容    this.left = null // 左子树    this.right = null // 右子树  }}class BST {  constructor(compare) {    this.root = null // 树根    this.size = 0 // 树中的节点个数    this.compare = compare || this.compare  }  compare(a,b) {    return a - b  }  add(element) {    if(this.root === null) {      this.root = new Node(element, null)      this.size++      return    }    // 获取根节点 用以后增加的进行判断 放右边还是放左边    let currentNode = this.root     let compare    let parent = null     while (currentNode) {      compare = this.compare(element, currentNode.element)      parent = currentNode // 先将父亲保存起来      // currentNode要不停的变动      if(compare > 0) {        currentNode = currentNode.right      } else if(compare < 0) {        currentNode = currentNode.left      } else {        currentNode.element = element // 相等时 先笼罩后续解决      }    }    let newNode = new Node(element, parent)    if(compare > 0) {      parent.right = newNode    } else if(compare < 0) {      parent.left = newNode    }    this.size++  }}

// 测试var bst = new BST((a,b)=>b.age-a.age) // 模仿sort办法bst.add({age: 10})bst.add({age: 8})bst.add({age:19})bst.add({age:20})bst.add({age: 5})console.log(bst)

reduce用法汇总

语法

array.reduce(function(total, currentValue, currentIndex, arr), initialValue);/*  total: 必须。初始值, 或者计算完结后的返回值。  currentValue: 必须。以后元素。  currentIndex: 可选。以后元素的索引;                       arr: 可选。以后元素所属的数组对象。  initialValue: 可选。传递给函数的初始值,相当于total的初始值。*/
reduceRight() 该办法用法与reduce()其实是雷同的,只是遍历的程序相同,它是从数组的最初一项开始,向前遍历到第一项

1. 数组求和

const arr = [12, 34, 23];const sum = arr.reduce((total, num) => total + num);// 设定初始值求和const arr = [12, 34, 23];const sum = arr.reduce((total, num) => total + num, 10);  // 以10为初始值求和// 对象数组求和var result = [  { subject: 'math', score: 88 },  { subject: 'chinese', score: 95 },  { subject: 'english', score: 80 }];const sum = result.reduce((accumulator, cur) => accumulator + cur.score, 0); const sum = result.reduce((accumulator, cur) => accumulator + cur.score, -10);  // 总分扣除10分

2. 数组最大值

const a = [23,123,342,12];const max = a.reduce((pre,next)=>pre>cur?pre:cur,0); // 342

3. 数组转对象

var streams = [{name: '技术', id: 1}, {name: '设计', id: 2}];var obj = streams.reduce((accumulator, cur) => {accumulator[cur.id] = cur; return accumulator;}, {});

4. 扁平一个二维数组

var arr = [[1, 2, 8], [3, 4, 9], [5, 6, 10]];var res = arr.reduce((x, y) => x.concat(y), []);

5. 数组去重

实现的基本原理如下:① 初始化一个空数组② 将须要去重解决的数组中的第1项在初始化数组中查找,如果找不到(空数组中必定找不到),就将该项增加到初始化数组中③ 将须要去重解决的数组中的第2项在初始化数组中查找,如果找不到,就将该项持续增加到初始化数组中④ ……⑤ 将须要去重解决的数组中的第n项在初始化数组中查找,如果找不到,就将该项持续增加到初始化数组中⑥ 将这个初始化数组返回
var newArr = arr.reduce(function (prev, cur) {    prev.indexOf(cur) === -1 && prev.push(cur);    return prev;},[]);

6. 对象数组去重

const dedup = (data, getKey = () => { }) => {    const dateMap = data.reduce((pre, cur) => {        const key = getKey(cur)        if (!pre[key]) {            pre[key] = cur        }        return pre    }, {})    return Object.values(dateMap)}

7. 求字符串中字母呈现的次数

const str = 'sfhjasfjgfasjuwqrqadqeiqsajsdaiwqdaklldflas-cmxzmnha';const res = str.split('').reduce((pre,next)=>{ pre[next] ? pre[next]++ : pre[next] = 1 return pre },{})
// 后果-: 1a: 8c: 1d: 4e: 1f: 4g: 1h: 2i: 2j: 4k: 1l: 3m: 2n: 1q: 5r: 1s: 6u: 1w: 2x: 1z: 1

8. compose函数

redux compose 源码实现
function compose(...funs) {    if (funs.length === 0) {        return arg => arg;    }    if (funs.length === 1) {       return funs[0];    }    return funs.reduce((a, b) => (...arg) => a(b(...arg)))}

类数组转化为数组的办法

const arrayLike=document.querySelectorAll('div')// 1.扩大运算符[...arrayLike]// 2.Array.fromArray.from(arrayLike)// 3.Array.prototype.sliceArray.prototype.slice.call(arrayLike)// 4.Array.applyArray.apply(null, arrayLike)// 5.Array.prototype.concatArray.prototype.concat.apply([], arrayLike)

对象数组列表转成树形构造(解决菜单)

[    {        id: 1,        text: '节点1',        parentId: 0 //这里用0示意为顶级节点    },    {        id: 2,        text: '节点1_1',        parentId: 1 //通过这个字段来确定子父级    }    ...]转成[    {        id: 1,        text: '节点1',        parentId: 0,        children: [            {                id:2,                text: '节点1_1',                parentId:1            }        ]    }]

实现代码如下:

function listToTree(data) {  let temp = {};  let treeData = [];  for (let i = 0; i < data.length; i++) {    temp[data[i].id] = data[i];  }  for (let i in temp) {    if (+temp[i].parentId != 0) {      if (!temp[temp[i].parentId].children) {        temp[temp[i].parentId].children = [];      }      temp[temp[i].parentId].children.push(temp[i]);    } else {      treeData.push(temp[i]);    }  }  return treeData;}

实现findIndex办法

var users = [  {id: 1, name: '张三'},  {id: 2, name: '张三'},  {id: 3, name: '张三'},  {id: 4, name: '张三'}]Array.prototype.myFindIndex = function (callback) {  // var callback = function (item, index) { return item.id === 4 }  for (var i = 0; i < this.length; i++) {    if (callback(this[i], i)) {      // 这里返回      return i    }  }}var ret = users.myFind(function (item, index) {  return item.id === 2})console.log(ret)