前言
随着 Prometheus 监控的组件、数量、指标越来越多,Prometheus 对计算性能的要求会越来越高,存储占用也会越来越多。
在这种状况下,要优化 Prometheus 性能, 优化存储占用. 第一工夫想到的可能是各种 Prometheus 的兼容存储计划, 如 Thanos 或 VM、Mimir 等。然而实际上尽管集中存储、长期存储、存储降采样及存储压缩能够肯定水平解决相干问题,然而治标不治本。
- 真正的本,还是在于指标量(series)过于宏大。
治标之法,应该是缩小指标量。有 2 种方法:
- Prometheus 性能调优 - 解决高基数问题
- 依据理论应用状况,只保留(keep)展现(Grafana Dashboards)和告警(prometheus rules)会用到的指标。
本次重点介绍第二种方法:如何依据理论的应用状况精简 Prometheus 的指标和存储占用?
思路
- 剖析以后 Prometheus 中存储的所有的 metric name(指标项);
- 剖析展现环节用到的所有 metric name,即 Grafana 的 Dashboards 用到的所有指标;
- 剖析告警环节用到的所有 metric name,即 Prometheus Rule 配置中用到的所有指标;
- (可选)剖析诊断环境用到的所有 metric name,即常常在 Prometheus UI 上 query 的指标;
- 通过
relabel
在metric_relabel_configs
或write_relabel_configs
仅keep
2-4 中的指标, 以此大幅缩小 Prometheus 须要存储的指标量.
要具体实现这个思路, 能够通过 Grafana Labs 出品的 mimirtool 来搞定.
我这里有个前后的比照成果, 可供参考这样做成果有多惊人:
- 精简前: 270336 流动 series
- 精简后: 61055 流动 series
- 精简成果: 将近 5 倍的精简率!
Grafana Mimirtool
Grafana Mimir 是一款以对象存储为存储形式的 Prometheus 长期存储解决方案, 从 Cortex 演变而来. 官网号称反对亿级别的 series 写入存储和查问.
Grafana Mimirtool 是 Mimir 公布的一个实用工具, 可独自应用.
Grafana Mimirtool 反对从以下方面提取指标:
- Grafana 实例中的Grafana Dashboards(通过 Grafana API)
- Mimir 实例中的 Prometheus alerting 和 recording rules
- Grafana Dashboards JSON文件
- Prometheus记alerting 和 recording rules 的 YAML文件
而后,Grafana Mimirtool能够将这些提取的指标与Prometheus或Cloud Prometheus实例中的流动 series 进行比拟,并输入一个 used
指标和 unused
指标的列表。
Prometheus 精简指标实战
假如
假设:
- 通过kube-prometheus-stack 装置 Prometheus
- 已装置 Grafana 且作为展现端
- 已配置相应的 告警规定
- 除此之外, 无其余须要额定保留的指标
前提
- Grafana Mimirtool 从 releases 中找到 mimirtool 对应平台的版本下载即可应用;
- 已创立 Grafana API token
- Prometheus已装置和配置.
第一步: 剖析 Grafana Dashboards 用到的指标
通过 Grafana API
具体如下:
# 通过 Grafana API剖析 Grafana 用到的指标# 前提是当初 Grafana上创立 API Keysmimirtool analyze grafana --address http://172.16.0.20:32651 --key=eyJrIjoiYjBWMGVoTHZTY3BnM3V5UzNVem9iWDBDSG5sdFRxRVoiLCJuIjoibWltaXJ0b29sIiwiaWQiOjF9
阐明:
http://172.16.0.20:32651
是 Grafana 地址--key=eyJr
是 Grafana API Token. 通过如下界面取得:
获取到的是一个 metrics-in-grafana.json
, 内容概述如下:
{ "metricsUsed": [ ":node_memory_MemAvailable_bytes:sum", "alertmanager_alerts", "alertmanager_alerts_invalid_total", "alertmanager_alerts_received_total", "alertmanager_notification_latency_seconds_bucket", "alertmanager_notification_latency_seconds_count", "alertmanager_notification_latency_seconds_sum", "alertmanager_notifications_failed_total", "alertmanager_notifications_total", "cluster", "cluster:namespace:pod_cpu:active:kube_pod_container_resource_limits", "cluster:namespace:pod_cpu:active:kube_pod_container_resource_requests", "cluster:namespace:pod_memory:active:kube_pod_container_resource_limits", "cluster:namespace:pod_memory:active:kube_pod_container_resource_requests", "cluster:node_cpu:ratio_rate5m", "container_cpu_cfs_periods_total", "container_cpu_cfs_throttled_periods_total", "..." ], "dashboards": [ { "slug": "", "uid": "alertmanager-overview", "title": "Alertmanager / Overview", "metrics": [ "alertmanager_alerts", "alertmanager_alerts_invalid_total", "alertmanager_alerts_received_total", "alertmanager_notification_latency_seconds_bucket", "alertmanager_notification_latency_seconds_count", "alertmanager_notification_latency_seconds_sum", "alertmanager_notifications_failed_total", "alertmanager_notifications_total" ], "parse_errors": null }, { "slug": "", "uid": "c2f4e12cdf69feb95caa41a5a1b423d9", "title": "etcd", "metrics": [ "etcd_disk_backend_commit_duration_seconds_bucket", "etcd_disk_wal_fsync_duration_seconds_bucket", "etcd_mvcc_db_total_size_in_bytes", "etcd_network_client_grpc_received_bytes_total", "etcd_network_client_grpc_sent_bytes_total", "etcd_network_peer_received_bytes_total", "etcd_network_peer_sent_bytes_total", "etcd_server_has_leader", "etcd_server_leader_changes_seen_total", "etcd_server_proposals_applied_total", "etcd_server_proposals_committed_total", "etcd_server_proposals_failed_total", "etcd_server_proposals_pending", "grpc_server_handled_total", "grpc_server_started_total", "process_resident_memory_bytes" ], "parse_errors": null }, {...} ]}
(可选)通过 Grafana Dashboards json 文件
如果无奈创立 Grafana API Token, 只有有 Grafana Dashboards json 文件, 也能够用来剖析, 示例如下:
# 通过 Grafana Dashboard json 剖析 Grafana 用到的指标mimirtool analyze dashboard grafana_dashboards/blackboxexporter-probe.jsonmimirtool analyze dashboard grafana_dashboards/es.json
失去的 json 构造和上一节相似, 就不赘述了.
第二步: 剖析 Prometheus Alerting 和 Recording Rules 用到的指标
具体操作如下:
# (可选)通过 kubectl cp 将用到的 rule files 拷贝到本地kubectl cp <prompod>:/etc/prometheus/rules/<releasename>-kube-prometheus-st-prometheus-rulefiles-0 -c prometheus ./kube-prometheus-stack/rulefiles/# 通过 Prometheus rule files 剖析 Prometheus Rule 用到的指标(波及 recording rule 和 alert rules)mimirtool analyze rule-file ./kube-prometheus-stack/rulefiles/*
后果如下 metrics-in-ruler.json
:
{ "metricsUsed": [ "ALERTS", "aggregator_unavailable_apiservice", "aggregator_unavailable_apiservice_total", "apiserver_client_certificate_expiration_seconds_bucket", "apiserver_client_certificate_expiration_seconds_count", "apiserver_request_terminations_total", "apiserver_request_total", "blackbox_exporter_config_last_reload_successful", "..." ], "ruleGroups": [ { "namspace": "default-monitor-kube-prometheus-st-kubernetes-apps-ae2b16e5-41d8-4069-9297-075c28c6969e", "name": "kubernetes-apps", "metrics": [ "kube_daemonset_status_current_number_scheduled", "kube_daemonset_status_desired_number_scheduled", "kube_daemonset_status_number_available", "kube_daemonset_status_number_misscheduled", "kube_daemonset_status_updated_number_scheduled", "..." ] "parse_errors": null }, { "namspace": "default-monitor-kube-prometheus-st-kubernetes-resources-ccb4a7bc-f2a0-4fe4-87f7-0b000468f18f", "name": "kubernetes-resources", "metrics": [ "container_cpu_cfs_periods_total", "container_cpu_cfs_throttled_periods_total", "kube_node_status_allocatable", "kube_resourcequota", "namespace_cpu:kube_pod_container_resource_requests:sum", "namespace_memory:kube_pod_container_resource_requests:sum" ], "parse_errors": null }, {...} ]}
第三步: 剖析没用到的指标
具体如下:
# 综合剖析 Prometheus 采集到的 VS. (展现(Grafana Dashboards) + 记录及告警(Rule files))mimirtool analyze prometheus --address=http://172.16.0.20:30090/ --grafana-metrics-file="metrics-in-grafana.json" --ruler-metrics-file="metrics-in-ruler.json"
阐明:
--address=http://172.16.0.20:30090/
为 prometheus 地址--grafana-metrics-file="metrics-in-grafana.json"
为第一步失去的 json 文件--ruler-metrics-file="kube-prometheus-stack-metrics-in-ruler.json"
为第二步失去的 json 文件
输入后果prometheus-metrics.json
如下:
{ "total_active_series": 270336, "in_use_active_series": 61055, "additional_active_series": 209281, "in_use_metric_counts": [ { "metric": "rest_client_request_duration_seconds_bucket", "count": 8855, "job_counts": [ { "job": "kubelet", "count": 4840 }, { "job": "kube-controller-manager", "count": 1958 }, {...} ] }, { "metric": "grpc_server_handled_total", "count": 4394, "job_counts": [ { "job": "kube-etcd", "count": 4386 }, { "job": "default/kubernetes-ebao-ebaoops-pods", "count": 8 } ] }, {...} ], "additional_metric_counts": [ { "metric": "rest_client_rate_limiter_duration_seconds_bucket", "count": 81917, "job_counts": [ { "job": "kubelet", "count": 53966 }, { "job": "kube-proxy", "count": 23595 }, { "job": "kube-scheduler", "count": 2398 }, { "job": "kube-controller-manager", "count": 1958 } ] }, { "metric": "rest_client_rate_limiter_duration_seconds_count", "count": 7447, "job_counts": [ { "job": "kubelet", "count": 4906 }, { "job": "kube-proxy", "count": 2145 }, { "job": "kube-scheduler", "count": 218 }, { "job": "kube-controller-manager", "count": 178 } ] }, {...} ]}
第四步: 仅 keep
用到的指标
在 write_relabel_configs
环节配置
如果你有应用 remote_write
, 那么间接在 write_relabel_configs
环节配置 keep
relabel 规定, 简略粗犷.
能够先用 jp
命令失去所有须要 keep
的metric name:
jq '.metricsUsed' metrics-in-grafana.json \| tr -d '", ' \| sed '1d;$d' \| grep -v 'grafanacloud*' \| paste -s -d '|' -
输入后果相似如下:
instance:node_cpu_utilisation:rate1m|instance:node_load1_per_cpu:ratio|instance:node_memory_utilisation:ratio|instance:node_network_receive_bytes_excluding_lo:rate1m|instance:node_network_receive_drop_excluding_lo:rate1m|instance:node_network_transmit_bytes_excluding_lo:rate1m|instance:node_network_transmit_drop_excluding_lo:rate1m|instance:node_vmstat_pgmajfault:rate1m|instance_device:node_disk_io_time_seconds:rate1m|instance_device:node_disk_io_time_weighted_seconds:rate1m|node_cpu_seconds_total|node_disk_io_time_seconds_total|node_disk_read_bytes_total|node_disk_written_bytes_total|node_filesystem_avail_bytes|node_filesystem_size_bytes|node_load1|node_load15|node_load5|node_memory_Buffers_bytes|node_memory_Cached_bytes|node_memory_MemAvailable_bytes|node_memory_MemFree_bytes|node_memory_MemTotal_bytes|node_network_receive_bytes_total|node_network_transmit_bytes_total|node_uname_info|up
而后间接在 write_relabel_configs
环节配置 keep
relabel 规定:
remote_write:- url: <remote_write endpoint> basic_auth: username: <按需> password: <按需> write_relabel_configs: - source_labels: [__name__] regex: instance:node_cpu_utilisation:rate1m|instance:node_load1_per_cpu:ratio|instance:node_memory_utilisation:ratio|instance:node_network_receive_bytes_excluding_lo:rate1m|instance:node_network_receive_drop_excluding_lo:rate1m|instance:node_network_transmit_bytes_excluding_lo:rate1m|instance:node_network_transmit_drop_excluding_lo:rate1m|instance:node_vmstat_pgmajfault:rate1m|instance_device:node_disk_io_time_seconds:rate1m|instance_device:node_disk_io_time_weighted_seconds:rate1m|node_cpu_seconds_total|node_disk_io_time_seconds_total|node_disk_read_bytes_total|node_disk_written_bytes_total|node_filesystem_avail_bytes|node_filesystem_size_bytes|node_load1|node_load15|node_load5|node_memory_Buffers_bytes|node_memory_Cached_bytes|node_memory_MemAvailable_bytes|node_memory_MemFree_bytes|node_memory_MemTotal_bytes|node_network_receive_bytes_total|node_network_transmit_bytes_total|node_uname_info|up action: keep
在 metric_relabel_configs
环节配置
如果没有应用 remote_write
, 那么只能在 metric_relabel_configs
环节配置了.
以 etcd job 为例: (以 prometheus 配置为例, Prometheus Operator 请自行按需调整)
- job_name: serviceMonitor/default/monitor-kube-prometheus-st-kube-etcd/0 honor_labels: false kubernetes_sd_configs: - role: endpoints namespaces: names: - kube-system scheme: https tls_config: insecure_skip_verify: true ca_file: /etc/prometheus/secrets/etcd-certs/ca.crt cert_file: /etc/prometheus/secrets/etcd-certs/healthcheck-client.crt key_file: /etc/prometheus/secrets/etcd-certs/healthcheck-client.key relabel_configs: - source_labels: - job target_label: __tmp_prometheus_job_name - ... metric_relabel_configs: - source_labels: [__name__] regex: etcd_disk_backend_commit_duration_seconds_bucket|etcd_disk_wal_fsync_duration_seconds_bucket|etcd_mvcc_db_total_size_in_bytes|etcd_network_client_grpc_received_bytes_total|etcd_network_client_grpc_sent_bytes_total|etcd_network_peer_received_bytes_total|etcd_network_peer_sent_bytes_total|etcd_server_has_leader|etcd_server_leader_changes_seen_total|etcd_server_proposals_applied_total|etcd_server_proposals_committed_total|etcd_server_proposals_failed_total|etcd_server_proposals_pending|grpc_server_handled_total|grpc_server_started_total|process_resident_memory_bytes|etcd_http_failed_total|etcd_http_received_total|etcd_http_successful_duration_seconds_bucket|etcd_network_peer_round_trip_time_seconds_bucket|grpc_server_handling_seconds_bucket|up action: keep
不必 keep
而应用 drop
同样滴, 不必 keep
而改为应用 drop
也是能够的. 这里不再赘述.
总结
本文中,介绍了精简 Prometheus 指标的需要, 而后阐明如何应用 mimirtool analyze
命令来确定Grafana Dashboards 以及 Prometheus Rules 中用到的指标。而后用 analyze prometheus
剖析了展现和告警中used
和 unused
的流动 series,最初配置了 Prometheus 以仅 keep
用到的指标。
联合这次实战, 精简率能够达到 5 倍左右, 成果还是非常明显的. 举荐试一试. ️️️
️ 参考文档
- grafana/mimir: Grafana Mimir provides horizontally scalable, highly available, multi-tenant, long-term storage for Prometheus. (github.com)
- Analyzing and reducing metrics usage with Grafana Mimirtool | Grafana Cloud documentation
三人行, 必有我师; 常识共享, 天下为公. 本文由东风微鸣技术博客 EWhisper.cn 编写.