二叉树档次遍历
// 二叉树档次遍历class Node { constructor(element, parent) { this.parent = parent // 父节点 this.element = element // 以后存储内容 this.left = null // 左子树 this.right = null // 右子树 }}class BST { constructor(compare) { this.root = null // 树根 this.size = 0 // 树中的节点个数 this.compare = compare || this.compare } compare(a,b) { return a - b } add(element) { if(this.root === null) { this.root = new Node(element, null) this.size++ return } // 获取根节点 用以后增加的进行判断 放右边还是放左边 let currentNode = this.root let compare let parent = null while (currentNode) { compare = this.compare(element, currentNode.element) parent = currentNode // 先将父亲保存起来 // currentNode要不停的变动 if(compare > 0) { currentNode = currentNode.right } else if(compare < 0) { currentNode = currentNode.left } else { currentNode.element = element // 相等时 先笼罩后续解决 } } let newNode = new Node(element, parent) if(compare > 0) { parent.right = newNode } else if(compare < 0) { parent.left = newNode } this.size++ } // 档次遍历 队列 levelOrderTraversal(visitor) { if(this.root == null) { return } let stack = [this.root] let index = 0 // 指针 指向0 let currentNode while (currentNode = stack[index++]) { // 反转二叉树 let tmp = currentNode.left currentNode.left = currentNode.right currentNode.right = tmp visitor.visit(currentNode.element) if(currentNode.left) { stack.push(currentNode.left) } if(currentNode.right) { stack.push(currentNode.right) } } }}
// 测试var bst = new BST((a,b)=>a.age-b.age) // 模仿sort办法// // bst.add({age: 10})bst.add({age: 8})bst.add({age:19})bst.add({age:6})bst.add({age: 15})bst.add({age: 22})bst.add({age: 20})// 应用访问者模式class Visitor { constructor() { this.visit = function (elem) { elem.age = elem.age*2 } }}// console.log(bst.levelOrderTraversal(new Visitor()))
实现类的继承
类的继承在几年前是重点内容,有n种继承形式各有优劣,es6遍及后越来越不重要,那么多种写法有点『回字有四样写法』的意思,如果还想深刻了解的去看红宝书即可,咱们目前只实现一种最现实的继承形式。
function Parent(name) { this.parent = name}Parent.prototype.say = function() { console.log(`${this.parent}: 你打篮球的样子像kunkun`)}function Child(name, parent) { // 将父类的构造函数绑定在子类上 Parent.call(this, parent) this.child = name}/** 1. 这一步不必Child.prototype =Parent.prototype的起因是怕共享内存,批改父类原型对象就会影响子类 2. 不必Child.prototype = new Parent()的起因是会调用2次父类的构造方法(另一次是call),会存在一份多余的父类实例属性3. Object.create是创立了父类原型的正本,与父类原型齐全隔离*/Child.prototype = Object.create(Parent.prototype);Child.prototype.say = function() { console.log(`${this.parent}好,我是练习时长两年半的${this.child}`);}// 留神记得把子类的结构指向子类自身Child.prototype.constructor = Child;var parent = new Parent('father');parent.say() // father: 你打篮球的样子像kunkunvar child = new Child('cxk', 'father');child.say() // father好,我是练习时长两年半的cxk
实现apply办法
apply原理与call很类似,不多赘述
// 模仿 applyFunction.prototype.myapply = function(context, arr) { var context = Object(context) || window; context.fn = this; var result; if (!arr) { result = context.fn(); } else { var args = []; for (var i = 0, len = arr.length; i < len; i++) { args.push("arr[" + i + "]"); } result = eval("context.fn(" + args + ")"); } delete context.fn; return result;};
实现双向数据绑定
let obj = {}let input = document.getElementById('input')let span = document.getElementById('span')// 数据劫持Object.defineProperty(obj, 'text', { configurable: true, enumerable: true, get() { console.log('获取数据了') }, set(newVal) { console.log('数据更新了') input.value = newVal span.innerHTML = newVal }})// 输出监听input.addEventListener('keyup', function(e) { obj.text = e.target.value})
参考:前端手写面试题具体解答
实现非负大整数相加
JavaScript对数值有范畴的限度,限度如下:
Number.MAX_VALUE // 1.7976931348623157e+308Number.MAX_SAFE_INTEGER // 9007199254740991Number.MIN_VALUE // 5e-324Number.MIN_SAFE_INTEGER // -9007199254740991
如果想要对一个超大的整数(> Number.MAX_SAFE_INTEGER
)进行加法运算,然而又想输入个别模式,那么应用 + 是无奈达到的,一旦数字超过 Number.MAX_SAFE_INTEGER
数字会被立刻转换为迷信计数法,并且数字精度相比以前将会有误差。
实现一个算法进行大数的相加:
function sumBigNumber(a, b) { let res = ''; let temp = 0; a = a.split(''); b = b.split(''); while (a.length || b.length || temp) { temp += ~~a.pop() + ~~b.pop(); res = (temp % 10) + res; temp = temp > 9 } return res.replace(/^0+/, '');}
其次要的思路如下:
- 首先用字符串的形式来保留大数,这样数字在数学示意上就不会发生变化
- 初始化res,temp来保留两头的计算结果,并将两个字符串转化为数组,以便进行每一位的加法运算
- 将两个数组的对应的位进行相加,两个数相加的后果可能大于10,所以可能要仅为,对10进行取余操作,将后果保留在以后位
- 判断以后位是否大于9,也就是是否会进位,若是则将temp赋值为true,因为在加法运算中,true会主动隐式转化为1,以便于下一次相加
- 反复上述操作,直至计算完结
查找字符串中呈现最多的字符和个数
例: abbcccddddd -> 字符最多的是d,呈现了5次
let str = "abcabcabcbbccccc";let num = 0;let char = ''; // 使其依照肯定的秩序排列str = str.split('').sort().join('');// "aaabbbbbcccccccc"// 定义正则表达式let re = /(\w)\1+/g;str.replace(re,($0,$1) => { if(num < $0.length){ num = $0.length; char = $1; }});console.log(`字符最多的是${char},呈现了${num}次`);
小孩报数问题
有30个小孩儿,编号从1-30,围成一圈依此报数,1、2、3 数到 3 的小孩儿退出这个圈, 而后下一个小孩 从新报数 1、2、3,问最初剩下的那个小孩儿的编号是多少?
function childNum(num, count){ let allplayer = []; for(let i = 0; i < num; i++){ allplayer[i] = i + 1; } let exitCount = 0; // 来到人数 let counter = 0; // 记录报数 let curIndex = 0; // 以后下标 while(exitCount < num - 1){ if(allplayer[curIndex] !== 0) counter++; if(counter == count){ allplayer[curIndex] = 0; counter = 0; exitCount++; } curIndex++; if(curIndex == num){ curIndex = 0 }; } for(i = 0; i < num; i++){ if(allplayer[i] !== 0){ return allplayer[i] } }}childNum(30, 3)
实现数组的flat办法
function _flat(arr, depth) { if(!Array.isArray(arr) || depth <= 0) { return arr; } return arr.reduce((prev, cur) => { if (Array.isArray(cur)) { return prev.concat(_flat(cur, depth - 1)) } else { return prev.concat(cur); } }, []);}
实现公布-订阅模式
class EventCenter{ // 1. 定义事件容器,用来装事件数组 let handlers = {} // 2. 增加事件办法,参数:事件名 事件办法 addEventListener(type, handler) { // 创立新数组容器 if (!this.handlers[type]) { this.handlers[type] = [] } // 存入事件 this.handlers[type].push(handler) } // 3. 触发事件,参数:事件名 事件参数 dispatchEvent(type, params) { // 若没有注册该事件则抛出谬误 if (!this.handlers[type]) { return new Error('该事件未注册') } // 触发事件 this.handlers[type].forEach(handler => { handler(...params) }) } // 4. 事件移除,参数:事件名 要删除事件,若无第二个参数则删除该事件的订阅和公布 removeEventListener(type, handler) { if (!this.handlers[type]) { return new Error('事件有效') } if (!handler) { // 移除事件 delete this.handlers[type] } else { const index = this.handlers[type].findIndex(el => el === handler) if (index === -1) { return new Error('无该绑定事件') } // 移除事件 this.handlers[type].splice(index, 1) if (this.handlers[type].length === 0) { delete this.handlers[type] } } }}
Object.is
Object.is
解决的次要是这两个问题:
+0 === -0 // trueNaN === NaN // false
const is= (x, y) => { if (x === y) { // +0和-0应该不相等 return x !== 0 || y !== 0 || 1/x === 1/y; } else { return x !== x && y !== y; }}
实现类的继承
实现类的继承-简版
类的继承在几年前是重点内容,有n种继承形式各有优劣,es6遍及后越来越不重要,那么多种写法有点『回字有四样写法』的意思,如果还想深刻了解的去看红宝书即可,咱们目前只实现一种最现实的继承形式。
// 寄生组合继承function Parent(name) { this.name = name}Parent.prototype.say = function() { console.log(this.name + ` say`);}Parent.prototype.play = function() { console.log(this.name + ` play`);}function Child(name, parent) { // 将父类的构造函数绑定在子类上 Parent.call(this, parent) this.name = name}/** 1. 这一步不必Child.prototype = Parent.prototype的起因是怕共享内存,批改父类原型对象就会影响子类 2. 不必Child.prototype = new Parent()的起因是会调用2次父类的构造方法(另一次是call),会存在一份多余的父类实例属性3. Object.create是创立了父类原型的正本,与父类原型齐全隔离*/Child.prototype = Object.create(Parent.prototype);Child.prototype.say = function() { console.log(this.name + ` say`);}// 留神记得把子类的结构指向子类自身Child.prototype.constructor = Child;
// 测试var parent = new Parent('parent');parent.say() var child = new Child('child');child.say() child.play(); // 继承父类的办法
ES5实现继承-具体
第一种形式是借助call实现继承
function Parent1(){ this.name = 'parent1';}function Child1(){ Parent1.call(this); this.type = 'child1' }console.log(new Child1);
这样写的时候子类尽管可能拿到父类的属性值,然而问题是父类中一旦存在办法那么子类无奈继承。那么引出上面的办法
第二种形式借助原型链实现继承:
function Parent2() { this.name = 'parent2'; this.play = [1, 2, 3] } function Child2() { this.type = 'child2'; } Child2.prototype = new Parent2(); console.log(new Child2());
看似没有问题,父类的办法和属性都可能拜访,但实际上有一个潜在的有余。举个例子:
var s1 = new Child2(); var s2 = new Child2(); s1.play.push(4); console.log(s1.play, s2.play); // [1,2,3,4] [1,2,3,4]
明明我只扭转了s1的play属性,为什么s2也跟着变了呢?很简略,因为两个实例应用的是同一个原型对象
第三种形式:将前两种组合:
function Parent3 () { this.name = 'parent3'; this.play = [1, 2, 3]; } function Child3() { Parent3.call(this); this.type = 'child3'; } Child3.prototype = new Parent3(); var s3 = new Child3(); var s4 = new Child3(); s3.play.push(4); console.log(s3.play, s4.play); // [1,2,3,4] [1,2,3]
之前的问题都得以解决。然而这里又徒增了一个新问题,那就是Parent3的构造函数会多执行了一次(Child3.prototype = new Parent3()
;)。这是咱们不愿看到的。那么如何解决这个问题?
第四种形式: 组合继承的优化1
function Parent4 () { this.name = 'parent4'; this.play = [1, 2, 3]; } function Child4() { Parent4.call(this); this.type = 'child4'; } Child4.prototype = Parent4.prototype;
这里让将父类原型对象间接给到子类,父类构造函数只执行一次,而且父类属性和办法均能拜访,然而咱们来测试一下
var s3 = new Child4(); var s4 = new Child4(); console.log(s3)
子类实例的构造函数是Parent4,显然这是不对的,应该是Child4。
第五种形式(最举荐应用):优化2
function Parent5 () { this.name = 'parent5'; this.play = [1, 2, 3]; } function Child5() { Parent5.call(this); this.type = 'child5'; } Child5.prototype = Object.create(Parent5.prototype); Child5.prototype.constructor = Child5;
这是最举荐的一种形式,靠近完满的继承。
实现redux-thunk
redux-thunk
能够利用redux
中间件让redux
反对异步的action
// 如果 action 是个函数,就调用这个函数// 如果 action 不是函数,就传给下一个中间件// 发现 action 是函数就调用const thunk = ({ dispatch, getState }) => (next) => (action) => { if (typeof action === 'function') { return action(dispatch, getState); } return next(action);};export default thunk
循环打印红黄绿
上面来看一道比拟典型的问题,通过这个问题来比照几种异步编程办法:红灯 3s 亮一次,绿灯 1s 亮一次,黄灯 2s 亮一次;如何让三个灯一直交替反复亮灯?
三个亮灯函数:
function red() { console.log('red');}function green() { console.log('green');}function yellow() { console.log('yellow');}
这道题简单的中央在于须要“交替反复”亮灯,而不是“亮完一次”就完结了。
(1)用 callback 实现
const task = (timer, light, callback) => { setTimeout(() => { if (light === 'red') { red() } else if (light === 'green') { green() } else if (light === 'yellow') { yellow() } callback() }, timer)}task(3000, 'red', () => { task(2000, 'green', () => { task(1000, 'yellow', Function.prototype) })})
这里存在一个 bug:代码只是实现了一次流程,执行后红黄绿灯别离只亮一次。该如何让它交替反复进行呢?
下面提到过递归,能够递归亮灯的一个周期:
const step = () => { task(3000, 'red', () => { task(2000, 'green', () => { task(1000, 'yellow', step) }) })}step()
留神看黄灯亮的回调里又再次调用了 step 办法 以实现循环亮灯。
(2)用 promise 实现
const task = (timer, light) => new Promise((resolve, reject) => { setTimeout(() => { if (light === 'red') { red() } else if (light === 'green') { green() } else if (light === 'yellow') { yellow() } resolve() }, timer) })const step = () => { task(3000, 'red') .then(() => task(2000, 'green')) .then(() => task(2100, 'yellow')) .then(step)}step()
这里将回调移除,在一次亮灯完结后,resolve 以后 promise,并仍然应用递归进行。
(3)用 async/await 实现
const taskRunner = async () => { await task(3000, 'red') await task(2000, 'green') await task(2100, 'yellow') taskRunner()}taskRunner()
Function.prototype.apply()
第一个参数是绑定的this,默认为window
,第二个参数是数组或类数组
Function.prototype.apply = function(context = window, args) { if (typeof this !== 'function') { throw new TypeError('Type Error'); } const fn = Symbol('fn'); context[fn] = this; const res = context[fn](...args); delete context[fn]; return res;}
实现数组的filter办法
Array.prototype._filter = function(fn) { if (typeof fn !== "function") { throw Error('参数必须是一个函数'); } const res = []; for (let i = 0, len = this.length; i < len; i++) { fn(this[i]) && res.push(this[i]); } return res;}
实现观察者模式
观察者模式(基于公布订阅模式) 有观察者,也有被观察者
观察者须要放到被观察者中,被观察者的状态变动须要告诉观察者 我变动了 外部也是基于公布订阅模式,收集观察者,状态变动后要被动告诉观察者
class Subject { // 被观察者 学生 constructor(name) { this.state = 'happy' this.observers = []; // 存储所有的观察者 } // 收集所有的观察者 attach(o){ // Subject. prototype. attch this.observers.push(o) } // 更新被观察者 状态的办法 setState(newState) { this.state = newState; // 更新状态 // this 指被观察者 学生 this.observers.forEach(o => o.update(this)) // 告诉观察者 更新它们的状态 }}class Observer{ // 观察者 父母和老师 constructor(name) { this.name = name } update(student) { console.log('以后' + this.name + '被告诉了', '以后学生的状态是' + student.state) }}let student = new Subject('学生'); let parent = new Observer('父母'); let teacher = new Observer('老师'); // 被观察者存储观察者的前提,须要先接收观察者student. attach(parent); student. attach(teacher); student. setState('被欺侮了');
实现一个迭代器生成函数
ES6对迭代器的实现
JS原生的汇合类型数据结构,只有Array
(数组)和Object
(对象);而ES6
中,又新增了Map
和Set
。四种数据结构各自有着本人特地的外部实现,但咱们仍期待以同样的一套规定去遍历它们,所以ES6
在推出新数据结构的同时也推出了一套 对立的接口机制 ——迭代器(Iterator
)。
ES6
约定,任何数据结构只有具备Symbol.iterator
属性(这个属性就是Iterator
的具体实现,它实质上是以后数据结构默认的迭代器生成函数),就能够被遍历——精确地说,是被for...of...
循环和迭代器的next办法遍历。 事实上,for...of...
的背地正是对next
办法的重复调用。
在ES6中,针对Array
、Map
、Set
、String
、TypedArray
、函数的 arguments
对象、NodeList
对象这些原生的数据结构都能够通过for...of...
进行遍历。原理都是一样的,此处咱们拿最简略的数组进行举例,当咱们用for...of...
遍历数组时:
const arr = [1, 2, 3]const len = arr.lengthfor(item of arr) { console.log(`以后元素是${item}`)}
之所以可能按程序一次一次地拿到数组里的每一个成员,是因为咱们借助数组的Symbol.iterator
生成了它对应的迭代器对象,通过重复调用迭代器对象的next
办法拜访了数组成员,像这样:
const arr = [1, 2, 3]// 通过调用iterator,拿到迭代器对象const iterator = arr[Symbol.iterator]()// 对迭代器对象执行next,就能一一拜访汇合的成员iterator.next()iterator.next()iterator.next()
丢进控制台,咱们能够看到next
每次会按程序帮咱们拜访一个汇合成员:
而for...of...
做的事件,根本等价于上面这通操作:
// 通过调用iterator,拿到迭代器对象const iterator = arr[Symbol.iterator]()// 初始化一个迭代后果let now = { done: false }// 循环往外迭代成员while(!now.done) { now = iterator.next() if(!now.done) { console.log(`当初遍历到了${now.value}`) }}
能够看出,for...of...
其实就是iterator
循环调用换了种写法。在ES6中咱们之所以可能开心地用for...of...
遍历各种各种的汇合,全靠迭代器模式在背地给力。
ps:此处举荐浏览迭代协定 (opens new window),置信大家读过后会对迭代器在ES6中的实现有更深的了解。
实现深拷贝
简洁版本
简略版:
const newObj = JSON.parse(JSON.stringify(oldObj));
局限性:
- 他无奈实现对函数 、RegExp等非凡对象的克隆
- 会摈弃对象的
constructo
r,所有的构造函数会指向Object
- 对象有循环援用,会报错
面试简版
function deepClone(obj) { // 如果是 值类型 或 null,则间接return if(typeof obj !== 'object' || obj === null) { return obj } // 定义后果对象 let copy = {} // 如果对象是数组,则定义后果数组 if(obj.constructor === Array) { copy = [] } // 遍历对象的key for(let key in obj) { // 如果key是对象的自有属性 if(obj.hasOwnProperty(key)) { // 递归调用深拷贝办法 copy[key] = deepClone(obj[key]) } } return copy}
调用深拷贝办法,若属性为值类型,则间接返回;若属性为援用类型,则递归遍历。这就是咱们在解这一类题时的外围的办法。
进阶版
- 解决拷贝循环援用问题
- 解决拷贝对应原型问题
// 递归拷贝 (类型判断)function deepClone(value,hash = new WeakMap){ // 弱援用,不必map,weakMap更适合一点 // null 和 undefiend 是不须要拷贝的 if(value == null){ return value;} if(value instanceof RegExp) { return new RegExp(value) } if(value instanceof Date) { return new Date(value) } // 函数是不须要拷贝 if(typeof value != 'object') return value; let obj = new value.constructor(); // [] {} // 阐明是一个对象类型 if(hash.get(value)){ return hash.get(value) } hash.set(value,obj); for(let key in value){ // in 会遍历以后对象上的属性 和 __proto__指代的属性 // 补拷贝 对象的__proto__上的属性 if(value.hasOwnProperty(key)){ // 如果值还有可能是对象 就持续拷贝 obj[key] = deepClone(value[key],hash); } } return obj // 辨别对象和数组 Object.prototype.toString.call}
// testvar o = {};o.x = o;var o1 = deepClone(o); // 如果这个对象拷贝过了 就返回那个拷贝的后果就能够了console.log(o1);
实现残缺的深拷贝
1. 简易版及问题
JSON.parse(JSON.stringify());
预计这个api能笼罩大多数的利用场景,没错,谈到深拷贝,我第一个想到的也是它。然而实际上,对于某些严格的场景来说,这个办法是有微小的坑的。问题如下:
- 无奈解决
循环援用
的问题。举个例子:
const a = {val:2};a.target = a;
拷贝a
会呈现零碎栈溢出,因为呈现了有限递归的状况。
- 无奈拷贝一些非凡的对象,诸如
RegExp, Date, Set, Map
等 - 无奈拷贝
函数
(划重点)。
因而这个api先pass掉,咱们从新写一个深拷贝,简易版如下:
const deepClone = (target) => { if (typeof target === 'object' && target !== null) { const cloneTarget = Array.isArray(target) ? []: {}; for (let prop in target) { if (target.hasOwnProperty(prop)) { cloneTarget[prop] = deepClone(target[prop]); } } return cloneTarget; } else { return target; }}
当初,咱们以刚刚发现的三个问题为导向,一步步来欠缺、优化咱们的深拷贝代码。
2. 解决循环援用
当初问题如下:
let obj = {val : 100};obj.target = obj;deepClone(obj);//报错: RangeError: Maximum call stack size exceeded
这就是循环援用。咱们怎么来解决这个问题呢?
创立一个Map。记录下曾经拷贝过的对象,如果说曾经拷贝过,那间接返回它行了。
const isObject = (target) => (typeof target === 'object' || typeof target === 'function') && target !== null;const deepClone = (target, map = new Map()) => { if(map.get(target)) return target; if (isObject(target)) { map.set(target, true); const cloneTarget = Array.isArray(target) ? []: {}; for (let prop in target) { if (target.hasOwnProperty(prop)) { cloneTarget[prop] = deepClone(target[prop],map); } } return cloneTarget; } else { return target; } }
当初来试一试:
const a = {val:2};a.target = a;let newA = deepClone(a);console.log(newA)//{ val: 2, target: { val: 2, target: [Circular] } }
如同是没有问题了, 拷贝也实现了。但还是有一个潜在的坑, 就是map 上的 key 和 map 形成了强援用关系,这是相当危险的。我给你解释一下与之绝对的弱援用的概念你就明确了
在计算机程序设计中,弱援用与强援用绝对,
被弱援用的对象能够在任何时候被回收,而对于强援用来说,只有这个强援用还在,那么对象无奈被回收。拿下面的例子说,map 和 a始终是强援用的关系, 在程序完结之前,a 所占的内存空间始终不会被开释。
怎么解决这个问题?
很简略,让 map 的 key 和 map 形成弱援用即可。ES6给咱们提供了这样的数据结构,它的名字叫WeakMap,它是一种非凡的Map, 其中的键是弱援用的。其键必须是对象,而值能够是任意的
略微革新一下即可:
const deepClone = (target, map = new WeakMap()) => { //...}
3. 拷贝非凡对象
可持续遍历
对于非凡的对象,咱们应用以下形式来甄别:
Object.prototype.toString.call(obj);
梳理一下对于可遍历对象会有什么后果:
["object Map"]["object Set"]["object Array"]["object Object"]["object Arguments"]
以这些不同的字符串为根据,咱们就能够胜利地甄别这些对象。
const getType = Object.prototype.toString.call(obj);const canTraverse = { '[object Map]': true, '[object Set]': true, '[object Array]': true, '[object Object]': true, '[object Arguments]': true,};const deepClone = (target, map = new Map()) => { if(!isObject(target)) return target; let type = getType(target); let cloneTarget; if(!canTraverse[type]) { // 解决不能遍历的对象 return; }else { // 这波操作相当要害,能够保障对象的原型不失落! let ctor = target.prototype; cloneTarget = new ctor(); } if(map.get(target)) return target; map.put(target, true); if(type === mapTag) { //解决Map target.forEach((item, key) => { cloneTarget.set(deepClone(key), deepClone(item)); }) } if(type === setTag) { //解决Set target.forEach(item => { target.add(deepClone(item)); }) } // 解决数组和对象 for (let prop in target) { if (target.hasOwnProperty(prop)) { cloneTarget[prop] = deepClone(target[prop]); } } return cloneTarget;}
不可遍历的对象
const boolTag = '[object Boolean]';const numberTag = '[object Number]';const stringTag = '[object String]';const dateTag = '[object Date]';const errorTag = '[object Error]';const regexpTag = '[object RegExp]';const funcTag = '[object Function]';
对于不可遍历的对象,不同的对象有不同的解决。
const handleRegExp = (target) => { const { source, flags } = target; return new target.constructor(source, flags);}const handleFunc = (target) => { // 待会的重点局部}const handleNotTraverse = (target, tag) => { const Ctor = targe.constructor; switch(tag) { case boolTag: case numberTag: case stringTag: case errorTag: case dateTag: return new Ctor(target); case regexpTag: return handleRegExp(target); case funcTag: return handleFunc(target); default: return new Ctor(target); }}
4. 拷贝函数
- 尽管函数也是对象,然而它过于非凡,咱们独自把它拿进去拆解。
- 提到函数,在JS种有两种函数,一种是一般函数,另一种是箭头函数。每个一般函数都是
- Function的实例,而箭头函数不是任何类的实例,每次调用都是不一样的援用。那咱们只须要
- 解决一般函数的状况,箭头函数间接返回它自身就好了。
那么如何来辨别两者呢?
答案是: 利用原型。箭头函数是不存在原型的。
const handleFunc = (func) => { // 箭头函数间接返回本身 if(!func.prototype) return func; const bodyReg = /(?<={)(.|\n)+(?=})/m; const paramReg = /(?<=\().+(?=\)\s+{)/; const funcString = func.toString(); // 别离匹配 函数参数 和 函数体 const param = paramReg.exec(funcString); const body = bodyReg.exec(funcString); if(!body) return null; if (param) { const paramArr = param[0].split(','); return new Function(...paramArr, body[0]); } else { return new Function(body[0]); }}
5. 残缺代码展现
const getType = obj => Object.prototype.toString.call(obj);const isObject = (target) => (typeof target === 'object' || typeof target === 'function') && target !== null;const canTraverse = { '[object Map]': true, '[object Set]': true, '[object Array]': true, '[object Object]': true, '[object Arguments]': true,};const mapTag = '[object Map]';const setTag = '[object Set]';const boolTag = '[object Boolean]';const numberTag = '[object Number]';const stringTag = '[object String]';const symbolTag = '[object Symbol]';const dateTag = '[object Date]';const errorTag = '[object Error]';const regexpTag = '[object RegExp]';const funcTag = '[object Function]';const handleRegExp = (target) => { const { source, flags } = target; return new target.constructor(source, flags);}const handleFunc = (func) => { // 箭头函数间接返回本身 if(!func.prototype) return func; const bodyReg = /(?<={)(.|\n)+(?=})/m; const paramReg = /(?<=\().+(?=\)\s+{)/; const funcString = func.toString(); // 别离匹配 函数参数 和 函数体 const param = paramReg.exec(funcString); const body = bodyReg.exec(funcString); if(!body) return null; if (param) { const paramArr = param[0].split(','); return new Function(...paramArr, body[0]); } else { return new Function(body[0]); }}const handleNotTraverse = (target, tag) => { const Ctor = target.constructor; switch(tag) { case boolTag: return new Object(Boolean.prototype.valueOf.call(target)); case numberTag: return new Object(Number.prototype.valueOf.call(target)); case stringTag: return new Object(String.prototype.valueOf.call(target)); case symbolTag: return new Object(Symbol.prototype.valueOf.call(target)); case errorTag: case dateTag: return new Ctor(target); case regexpTag: return handleRegExp(target); case funcTag: return handleFunc(target); default: return new Ctor(target); }}const deepClone = (target, map = new WeakMap()) => { if(!isObject(target)) return target; let type = getType(target); let cloneTarget; if(!canTraverse[type]) { // 解决不能遍历的对象 return handleNotTraverse(target, type); }else { // 这波操作相当要害,能够保障对象的原型不失落! let ctor = target.constructor; cloneTarget = new ctor(); } if(map.get(target)) return target; map.set(target, true); if(type === mapTag) { //解决Map target.forEach((item, key) => { cloneTarget.set(deepClone(key, map), deepClone(item, map)); }) } if(type === setTag) { //解决Set target.forEach(item => { cloneTarget.add(deepClone(item, map)); }) } // 解决数组和对象 for (let prop in target) { if (target.hasOwnProperty(prop)) { cloneTarget[prop] = deepClone(target[prop], map); } } return cloneTarget;}
实现数组的push办法
let arr = [];Array.prototype.push = function() { for( let i = 0 ; i < arguments.length ; i++){ this[this.length] = arguments[i] ; } return this.length;}
实现Object.freeze
Object.freeze
解冻一个对象,让其不能再增加/删除属性,也不能批改该对象已有属性的可枚举性、可配置可写性,也不能批改已有属性的值和它的原型属性,最初返回一个和传入参数雷同的对象
function myFreeze(obj){ // 判断参数是否为Object类型,如果是就关闭对象,循环遍历对象。去掉原型属性,将其writable个性设置为false if(obj instanceof Object){ Object.seal(obj); // 关闭对象 for(let key in obj){ if(obj.hasOwnProperty(key)){ Object.defineProperty(obj,key,{ writable:false // 设置只读 }) // 如果属性值仍然为对象,要通过递归来进行进一步的解冻 myFreeze(obj[key]); } } }}