我的项目链接:fork一下即可
UIE Slim满足工业利用场景,解决推理部署耗时问题,晋升效力!
如果有图片缺失查看原我的项目

UIE Slim满足工业利用场景,解决推理部署耗时问题,晋升效力

在UIE弱小的抽取能力背地,同样须要较大的算力反对计算。在一些工业利用场景中对性能的要求较高,若不能无效压缩则无奈理论利用。因而,基于数据蒸馏技术构建了UIE Slim数据蒸馏零碎。其原理是通过数据作为桥梁,将UIE模型的常识迁徙到关闭域信息抽取小模型,以达到精度损失较小的状况下却能达到大幅度预测速度晋升的成果。

FasterTokenizer是一款简略易用、功能强大的跨平台高性能文本预处理库,集成业界多个罕用的Tokenizer实现,反对不同NLP场景下的文本预处理性能,如文本分类、浏览了解,序列标注等。联合PaddleNLP Tokenizer模块,为用户在训练、推理阶段提供高效通用的文本预处理能力。use_faster: 应用C++实现的高性能分词算子FasterTokenizer进行文本预处理减速

UIE数据蒸馏三步

  • Step 1: 应用UIE模型对标注数据进行finetune,失去Teacher Model。
  • Step 2: 用户提供大规模无标注数据,需与标注数据同源。应用Taskflow UIE对无监督数据进行预测。
  • Step 3: 应用标注数据以及步骤2失去的合成数据训练出关闭域Student Model。

成果展现:

测试硬件状况:

1点算力卡对应的:
V100 32GB
GPUTesla V100
Video Mem32GB
CPU4 Cores
RAM32GB
Disk100GB

模型模型计算运行工夫precisionrecallF1
uie-base68.61049008s0.692770.723270.70769
uie-mini28.932519437s0.741380.540880.62545
uie-micro26.367019170.747570.484280.58779
uie-nano24.89377610.742860.490570.59091
蒸馏mini6.839258904s0.77320.750.76142
蒸馏micro6.776990s0.782610.720.75
蒸馏nano6.6231770s0.79570.740.76684

模型计算运行工夫:

| 模型 | 模型计算运行工夫 | 提速x倍|
| -------- | -------- | -------- |
| UIE base | 203.95947s | 1|
| UIE base + FasterTokenizer | 177.1798s | 1.15|
| UIE蒸馏mini | 21.97979s |9.28 |
| UIE蒸馏mini + FasterTokenizer | 20.1557s |10.12 |

Archive: data.zip

  • inflating: ./data/unlabeled_data.txt
  • inflating: ./data/doccano_ext.json

示例数据蕴含以下两局部:

名称数量
doccano格局标注数据(doccano_ext.json)200
无标注数据(unlabeled_data.txt)1277

1. 进行预训练微调,失去Teacher Model

具体参数以及doccano标注细节参考文档:

Paddlenlp之UIE模型实战实体抽取工作【打车数据、快递单】

[PaddleNLP之UIE信息抽取小样本进阶(二)[含doccano详解]](https://aistudio.baidu.com/ai...)

Paddlenlp之UIE分类模型【以情感偏向剖析新闻分类为例】含智能标注计划)

Paddlenlp之UIE关系抽取模型【高管关系抽取为例】

UIE:模型

模型构造语言大小
uie-base (默认)12-layers, 768-hidden, 12-heads中文118M
uie-base-en12-layers, 768-hidden, 12-heads英文118M
uie-medical-base12-layers, 768-hidden, 12-heads中文
uie-medium6-layers, 768-hidden, 12-heads中文75M
uie-mini6-layers, 384-hidden, 12-heads中文27M
uie-micro4-layers, 384-hidden, 12-heads中文23M
uie-nano4-layers, 312-hidden, 12-heads中文18M
uie-m-large24-layers, 1024-hidden, 16-heads中、英文理论大小2G
uie-m-base12-layers, 768-hidden, 12-heads中、英文理论大小1G

理论模型大小解释:

base模型118M parameters是指base模型的参数个数,因为同一个模型能够被不同的精度来示意,例如float16,float32,下载下来是450M左右(存储空间大小),是因为下载的模型是float32,118M * 4 大略是存储空间的量级。

!python finetune.py \    --train_path "./data/train.txt" \    --dev_path "./data/dev.txt" \    --save_dir "./checkpoint" \    --learning_rate 5e-6  \    --batch_size 16 \    --max_seq_len 512 \    --num_epochs 10 \    --model "uie-base" \    --seed 1000 \    --logging_steps 10 \    --valid_steps 50 \    --device "gpu"

base模型局部后果展现:

[2022-09-08 17:26:55,701] [    INFO] - Evaluation precision: 0.69375, recall: 0.69811, F1: 0.69592[2022-09-08 17:27:01,145] [    INFO] - global step 260, epoch: 9, loss: 0.00172, speed: 1.84 step/s[2022-09-08 17:27:06,448] [    INFO] - global step 270, epoch: 9, loss: 0.00168, speed: 1.89 step/s[2022-09-08 17:27:12,102] [    INFO] - global step 280, epoch: 10, loss: 0.00165, speed: 1.77 step/s[2022-09-08 17:27:17,607] [    INFO] - global step 290, epoch: 10, loss: 0.00162, speed: 1.82 step/s[2022-09-08 17:27:22,899] [    INFO] - global step 300, epoch: 10, loss: 0.00159, speed: 1.89 step/s[2022-09-08 17:27:26,577] [    INFO] - Evaluation precision: 0.69277, recall: 0.72327, F1: 0.70769[2022-09-08 17:27:26,577] [    INFO] - best F1 performence has been updated: 0.69841 --> 0.70769

2.离线蒸馏

2.1 通过训练好的UIE定制模型预测无监督数据的标签

用户提供大规模无标注数据,需与标注数据同源。应用Taskflow UIE对无监督数据进行预测。

References:

GlobalPointer:用对立的形式解决嵌套和非嵌套NER:

GPLinker:基于GlobalPointer的实体关系联结抽取

GPLinker_pytorch

CBLUE

%cd /home/aistudio/data_distill!python data_distill.py \    --data_path /home/aistudio/data \    --save_dir student_data \    --task_type relation_extraction \    --synthetic_ratio 10 \    --model_path /home/aistudio/checkpoint/model_best

可配置参数阐明:

  • data_path: 标注数据(doccano_ext.json)及无监督文本(unlabeled_data.txt)门路。
  • model_path: 训练好的UIE定制模型门路。
  • save_dir: 学生模型训练数据保留门路。
  • synthetic_ratio: 管制合成数据的比例。最大合成数据数量=synthetic_ratio*标注数据数量。
  • task_type: 抉择工作类型,可选有entity_extraction,relation_extraction,event_extraction和opinion_extraction。因为是关闭域信息抽取,需指定工作类型。
  • seed: 随机种子,默认为1000。
 parser.add_argument("--data_path", default="../data", type=str, help="The directory for labeled data with doccano format and the large scale unlabeled data.")    parser.add_argument("--model_path", type=str, default="../checkpoint/model_best", help="The path of saved model that you want to load.")    parser.add_argument("--save_dir", default="./distill_task", type=str, help="The path of data that you wanna save.")    parser.add_argument("--synthetic_ratio", default=10, type=int, help="The ratio of labeled and synthetic samples.")    parser.add_argument("--task_type", choices=['relation_extraction', 'event_extraction', 'entity_extraction', 'opinion_extraction'], default="entity_extraction", type=str, help="Select the training task type.")    parser.add_argument("--seed", type=int, default=1000, help="Random seed for initialization")

可配置参数阐明:

  • model_path: 训练好的UIE定制模型门路。
  • test_path: 测试数据集门路。
  • label_maps_path: 学生模型标签字典。
  • batch_size: 批处理大小,默认为8。
  • max_seq_len: 最大文本长度,默认为256。
  • task_type: 抉择工作类型,可选有entity_extraction,relation_extraction,event_extraction和opinion_extraction。因为是关闭域信息抽取的评估,需指定工作类型。
parser.add_argument("--model_path", type=str, default=None, help="The path of saved model that you want to load.")    parser.add_argument("--test_path", type=str, default=None, help="The path of test set.")    parser.add_argument("--encoder", default="ernie-3.0-base-zh", type=str, help="Select the pretrained encoder model for GP.")    parser.add_argument("--label_maps_path", default="./ner_data/label_maps.json", type=str, help="The file path of the labels dictionary.")    parser.add_argument("--batch_size", type=int, default=16, help="Batch size per GPU/CPU for training.")    parser.add_argument("--max_seq_len", type=int, default=128, help="The maximum total input sequence length after tokenization.")    parser.add_argument("--task_type", choices=['relation_extraction', 'event_extraction', 'entity_extraction', 'opinion_extraction'], default="entity_extraction",

2.3学生模型训练

底座模型能够参考上面进行替换!

!python train.py \    --task_type relation_extraction \    --train_path student_data/train_data.json \    --dev_path student_data/dev_data.json \    --label_maps_path student_data/label_maps.json \    --num_epochs 200 \    --encoder ernie-3.0-mini-zh
# %cd /home/aistudio/data_distill!python train.py \    --task_type relation_extraction \    --train_path student_data/train_data.json \    --dev_path student_data/dev_data.json \    --label_maps_path student_data/label_maps.json \    --num_epochs 100 \    --encoder ernie-3.0-mini-zh\    --device "gpu"\    --valid_steps 100\    --logging_steps 10\    --save_dir './checkpoint2'\    --batch_size 16

3.Taskflow部署学生模型以及性能测试

通过Taskflow一键部署关闭域信息抽取模型,task_path为学生模型门路。

demo测试

from pprint import pprintfrom paddlenlp import Taskflowie = Taskflow("information_extraction", model="uie-data-distill-gp", task_path="checkpoint2/model_best/") # Schema 在闭域信息抽取中是固定的pprint(ie("登革热@后果 升高 ### 血清白蛋白程度 查看 后果 查看 在资源匮乏地区和富足地区,对有症状患者均应晚期检测。"))
[{'疾病': [{'end': 3,          'probability': 0.9995957,          'relations': {'实验室查看': [{'end': 21,                                   'probability': 0.99892455,                                   'relations': {},                                   'start': 14,                                   'text': '血清白蛋白程度'}],                        '影像学查看': [{'end': 21,                                   'probability': 0.99832386,                                   'relations': {},                                   'start': 14,                                   'text': '血清白蛋白程度'}]},          'start': 0,          'text': '登革热'}]}]
from pprint import pprintimport jsonfrom paddlenlp.taskflow import Taskflowimport pandas as pd#运行工夫import timedef openreadtxt(file_name):    data = []    file = open(file_name,'r',encoding='UTF-8')  #关上文件    file_data = file.readlines() #读取所有行    for row in file_data:        data.append(row) #将每行数据插入data中         return data# 工夫1old_time = time.time()data_input=openreadtxt('/home/aistudio/数据集/unlabeled_data.txt')few_ie = Taskflow("information_extraction", model="uie-data-distill-gp", task_path="/home/aistudio/data_distill/checkpoint2/model_best",batch_size=32) # Schema 在闭域信息抽取中是固定的# 工夫1current_time = time.time()print("数据模型载入运行工夫为" + str(current_time - old_time) + "s")#工夫2old_time1 = time.time()results=few_ie(data_input)current_time1 = time.time()print("模型计算运行工夫为" + str(current_time1 - old_time1) + "s")#工夫2#工夫三old_time3 = time.time()test = pd.DataFrame(data=results)test.to_csv('/home/aistudio/output/reslut.txt', sep='\t', index=False,header=False) #本地# with open("/home/aistudio/output/reslut.txt", "w+",encoding='UTF-8') as f:    #a :   写入文件,若文件不存在则会先创立再写入,但不会笼罩原文件,而是追加在文件开端#     for result in results:#         line = json.dumps(result, ensure_ascii=False)  #对中文默认应用的ascii编码.想输入真正的中文须要指定ensure_ascii=False#         f.write(line + "\n")current_time3 = time.time()print("数据导出运行工夫为" + str(current_time3 - old_time3) + "s")# for idx, text in enumerate(data):#     print('Data: {} \t Lable: {}'.format(text[0], results[idx]))print("数据后果已导出")
**mini运行工夫:**数据模型载入运行工夫为0.8430757522583008s模型计算运行工夫为6.839258909225464s数据导出运行工夫为0.008304595947265625s**nano运行工夫:**数据模型载入运行工夫为0.5164840221405029s模型计算运行工夫为6.6231770515441895s数据导出运行工夫为0.023623943328857422s**micro运行工夫:**数据模型载入运行工夫为0.5323500633239746s模型计算运行工夫为6.77699007987976s数据导出运行工夫为0.04320549964904785s

4 进行预训练模型UIE-mini并测试推理工夫

关闭域UIE的schema是固定的,能够在label_maps.json查看

0:"手术医治"1:"实验室查看"2:"影像学查看"
from pprint import pprintimport jsonfrom paddlenlp import Taskflowimport pandas as pd#运行工夫import timedef openreadtxt(file_name):    data = []    file = open(file_name,'r',encoding='UTF-8')  #关上文件    file_data = file.readlines() #读取所有行    for row in file_data:        data.append(row) #将每行数据插入data中         return data# 工夫1old_time = time.time()data_input=openreadtxt('/home/aistudio/数据集/unlabeled_data.txt')schema = {'疾病': ['手术医治', '实验室查看', '影像学查看']}# few_ie = Taskflow('information_extraction', schema=schema, batch_size=32,task_path='/home/aistudio/checkpoint_mini/model_best') #自行切换few_ie = Taskflow('information_extraction', schema=schema, batch_size=32,task_path='/home/aistudio/checkpoint_micro/model_best')# 工夫1current_time = time.time()print("数据模型载入运行工夫为" + str(current_time - old_time) + "s")#工夫2old_time1 = time.time()results=few_ie(data_input)current_time1 = time.time()print("模型计算运行工夫为" + str(current_time1 - old_time1) + "s")#工夫2#工夫三old_time3 = time.time()test = pd.DataFrame(data=results)test.to_csv('/home/aistudio/output/reslut.txt', sep='\t', index=False,header=False) #本地# with open("/home/aistudio/output/reslut.txt", "w+",encoding='UTF-8') as f:    #a :   写入文件,若文件不存在则会先创立再写入,但不会笼罩原文件,而是追加在文件开端#     for result in results:#         line = json.dumps(result, ensure_ascii=False)  #对中文默认应用的ascii编码.想输入真正的中文须要指定ensure_ascii=False#         f.write(line + "\n")current_time3 = time.time()print("数据导出运行工夫为" + str(current_time3 - old_time3) + "s")# for idx, text in enumerate(data):#     print('Data: {} \t Lable: {}'.format(text[0], results[idx]))print("数据后果已导出")
通过上述程序自行切换:加载对应模型记录推理工夫:**uie-nano**数据模型载入运行工夫为0.3770780563354492s模型计算运行工夫为24.893776178359985s数据导出运行工夫为0.01157689094543457s**uie-micro**数据模型载入运行工夫为0.39632749557495117s模型计算运行工夫为26.367019176483154s数据导出运行工夫为0.012260198593139648s**uie-mini**数据模型载入运行工夫为0.5642790794372559s模型计算运行工夫为28.93251943588257s数据导出运行工夫为0.01435089111328125s**uie-base**数据模型载入运行工夫为1.4756040573120117s模型计算运行工夫为68.61049008369446s数据导出运行工夫为0.02205801010131836s

5.提前尝鲜UIE FasterTokenizer减速,晋升推理性能

FasterTokenizer是一款简略易用、功能强大的跨平台高性能文本预处理库,集成业界多个罕用的Tokenizer实现,反对不同NLP场景下的文本预处理性能,如文本分类、浏览了解,序列标注等。联合PaddleNLP Tokenizer模块,为用户在训练、推理阶段提供高效通用的文本预处理能力。

use_faster: 应用C++实现的高性能分词算子FasterTokenizer进行文本预处理减速。须要通过pip install faster_tokenizer装置FasterTokenizer库前方可应用。默认为False。更多应用阐明可参考[FasterTokenizer文档]

https://github.com/PaddlePadd...

个性

  • 高性能。因为底层采纳C++实现,所以其性能远高于目前惯例Python实现的Tokenizer。在文本分类工作上,FasterTokenizer比照Python版本Tokenizer减速比最高可达20倍。
  • 跨平台。FasterTokenizer可在不同的零碎平台上应用,目前已反对Windows x64,Linux x64以及MacOS 10.14+平台上应用。
  • 多编程语言反对。FasterTokenizer提供在C++、Python语言上开发的能力。
  • 灵活性强。用户能够通过指定不同的FasterTokenizer组件定制满足需要的Tokenizer。

FAQ

Q:我在AutoTokenizer.from_pretrained接口上曾经关上use_faster=True开关,为什么文本预处理阶段性能上如同没有任何变动?

A:在有三种状况下,关上use_faster=True开关可能无奈晋升性能:

  • 没有装置faster_tokenizer。若在没有装置faster_tokenizer库的状况下关上use_faster开关,PaddleNLP会给出以下warning:"Can't find the faster_tokenizer package, please ensure install faster_tokenizer correctly. "。
  • 加载的Tokenizer类型暂不反对Faster版本。目前反对4种Tokenizer的Faster版本,别离是BERT、ERNIE、TinyBERT以及ERNIE-M Tokenizer。若加载不反对Faster版本的Tokenizer状况下关上use_faster开关,PaddleNLP会给出以下warning:"The tokenizer XXX doesn't have the faster version. Please check the map paddlenlp.transformers.auto.tokenizer.FASTER_TOKENIZER_MAPPING_NAMES to see which faster tokenizers are currently supported."
  • 待切词文本长度过短(如文本均匀长度小于5)。这种状况下切词开销可能不是整个文本预处理的性能瓶颈,导致在应用FasterTokenizer后仍无奈晋升整体性能。

5.1 计划一

把paddlenlp间接装到指定门路而后批改对应文件;
详情参考这个PR:

Add use_faster flag for uie of taskflow.

5.2计划二

间接找到pr批改后的版本,从giuhub拉去过去:链接参考

https://github.com/joey12300/...

from pprint import pprintimport jsonfrom paddlenlp.taskflow import Taskflowimport pandas as pd#运行工夫import timedef openreadtxt(file_name):    data = []    file = open(file_name,'r',encoding='UTF-8')  #关上文件    file_data = file.readlines() #读取所有行    for row in file_data:        data.append(row) #将每行数据插入data中         return data# 工夫1old_time = time.time()data_input=openreadtxt('/home/aistudio/数据集/unlabeled_data-Copy1.txt')few_ie = Taskflow("information_extraction", model="uie-data-distill-gp", task_path="/home/aistudio/data_distill/checkpoint2/model_best",use_faster=True,batch_size=32) # Schema 在闭域信息抽取中是固定的# few_ie = Taskflow("information_extraction", model="uie-data-distill-gp", task_path="/home/aistudio/data_distill/checkpoint2/model_best",batch_size=32) # Schema 在闭域信息抽取中是固定的# schema = {'疾病': ['手术医治', '实验室查看', '影像学查看']}# few_ie = Taskflow('information_extraction', schema=schema, batch_size=32,use_faster=True,task_path='/home/aistudio/checkpoint/model_best')# few_ie = Taskflow('information_extraction', schema=schema, batch_size=32,task_path='/home/aistudio/checkpoint/model_best')# 工夫1current_time = time.time()print("数据模型载入运行工夫为" + str(current_time - old_time) + "s")#工夫2old_time1 = time.time()results=few_ie(data_input)current_time1 = time.time()print("模型计算运行工夫为" + str(current_time1 - old_time1) + "s")#工夫2#工夫三old_time3 = time.time()test = pd.DataFrame(data=results)test.to_csv('/home/aistudio/output/reslut.txt', sep='\t', index=False,header=False) #本地# with open("/home/aistudio/output/reslut.txt", "w+",encoding='UTF-8') as f:    #a :   写入文件,若文件不存在则会先创立再写入,但不会笼罩原文件,而是追加在文件开端#     for result in results:#         line = json.dumps(result, ensure_ascii=False)  #对中文默认应用的ascii编码.想输入真正的中文须要指定ensure_ascii=False#         f.write(line + "\n")current_time3 = time.time()print("数据导出运行工夫为" + str(current_time3 - old_time3) + "s")# for idx, text in enumerate(data):#     print('Data: {} \t Lable: {}'.format(text[0], results[idx]))print("数据后果已导出")

5.3UIE FasterTokenizer减速,晋升推理性能

数据样本增大为原来的三倍:unlabeled_data-Copy1.txt

UIE base

数据模型载入运行工夫为1.6006419658660889s

模型计算运行工夫为203.95947885513306s

数据导出运行工夫为0.07103896141052246s

UIE base + FasterTokenizer

数据模型载入运行工夫为1.6196515560150146s

模型计算运行工夫为177.17986011505127s

数据导出运行工夫为0.07898902893066406s

UIE蒸馏mini

数据模型载入运行工夫为0.8441095352172852s

模型计算运行工夫为21.979790925979614s

数据导出运行工夫为0.02339339256286621s

UIE蒸馏mini + FasterTokenizer

数据模型载入运行工夫为0.7269768714904785s

模型计算运行工夫为20.155770540237427s

数据导出运行工夫为0.012202978134155273s

6.总结

测试硬件状况:

1点算力卡对应的:
V100 32GB
GPUTesla V100
Video Mem32GB
CPU4 Cores
RAM32GB
Disk100GB

模型模型计算运行工夫precisionrecallF1
uie-base68.61049008s0.692770.723270.70769
uie-mini28.932519437s0.741380.540880.62545
uie-micro26.367019170.747570.484280.58779
uie-nano24.89377610.742860.490570.59091
蒸馏mini6.839258904s0.77320.750.76142
蒸馏micro6.776990s0.782610.720.75
蒸馏nano6.6231770s0.79570.740.76684

模型计算运行工夫:

| 模型 | 模型计算运行工夫 | 提速x倍|
| -------- | -------- | -------- |
| UIE base | 203.95947s | 1|
| UIE base + FasterTokenizer | 177.1798s | 1.15|
| UIE蒸馏mini | 21.97979s |9.28 |
| UIE蒸馏mini + FasterTokenizer | 20.1557s |10.12 |

1.能够看出UIE蒸馏在小网络下,性能差不多能够按需抉择。可能会在更大工作性能会更好点

2.这里uie-base等只简略运行了10个epoch,能够多训练会晋升性能

3.个别学生模型会抉择参数量比拟小的,UIE蒸馏版是schema并行推理的,速度会比UIE快很多,特地是schema比拟多以及关系抽取等须要多阶段推理的状况


1.FasterTokenizer减速,paddlenlp2.4.0版本目前还不反对,只有参考PR改下源码

2.关闭域UIE的话schema是固定的,能够在label_maps.json查看,目前反对实体抽取、关系抽取、观点抽取和事件抽取,句子级情感分类目前蒸馏还不反对

3.想要更快的推理换下学生模型的backbone就行

感激

感激paddlenlp工作人员@linjieccc的反对,承受了issue并创立了pull request:fix data distill for UIE #3231 https://github.com/PaddlePadd...

Add use_faster flag for uie of taskflow. #3194

瞻望:

后续对FasterTokenizer进行补充;以及钻研一下UIE模型的量化、剪枝、NAS

我的项目链接:fork一下即可
UIE Slim满足工业利用场景,解决推理部署耗时问题,晋升效力!
如果有图片缺失查看原我的项目