缓存就是内存中的数据,经常来自对数据库查问后果的保留。应用缓存,咱们能够防止频繁的与数据库进行交互,进而进步响应速度MyBatis也提供了对缓存的反对,分为一级缓存和二级缓存,能够通过下图来了解:


①、一级缓存是SqlSession级别的缓存。在操作数据库时须要结构sqlSession对象,在对象中有一个数据结构(HashMap)用于存储缓存数据。不同的sqlSession之间的缓存数据区域(HashMap)是相互不影响的。

②、二级缓存是mapper级别的缓存,多个SqlSession去操作同一个Mapper的sql语句,多个SqlSession能够共用二级缓存,二级缓存是跨SqlSession的

一级缓存

默认是开启的

①、咱们应用同一个sqlSession,对User表依据雷同id进行两次查问,查看他们收回sql语句的状况

  @Test  public void firstLevelCacheTest() throws IOException {    // 1. 通过类加载器对配置文件进行加载,加载成了字节输出流,存到内存中 留神:配置文件并没有被解析    InputStream resourceAsStream = Resources.getResourceAsStream("sqlMapConfig.xml");    // 2. (1)解析了配置文件,封装configuration对象 (2)创立了DefaultSqlSessionFactory工厂对象    SqlSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(resourceAsStream);    // 3.问题:openSession()执行逻辑是什么?    // 3. (1)创立事务对象 (2)创立了执行器对象cachingExecutor (3)创立了DefaultSqlSession对象    SqlSession sqlSession = sqlSessionFactory.openSession();    // 4. 委派给Executor来执行,Executor执行时又会调用很多其余组件(参数设置、解析sql的获取,sql的执行、后果集的封装)    User user = sqlSession.selectOne("com.itheima.mapper.UserMapper.findByCondition", 1);    User user2 = sqlSession.selectOne("com.itheima.mapper.UserMapper.findByCondition", 1);    System.out.println(user == user2);    sqlSession.close();  }

查看控制台打印状况:

② 同样是对user表进行两次查问,只不过两次查问之间进行了一次update操作。

  @Test  public void test3() throws IOException {    // 1. 通过类加载器对配置文件进行加载,加载成了字节输出流,存到内存中 留神:配置文件并没有被解析    InputStream resourceAsStream = Resources.getResourceAsStream("sqlMapConfig.xml");    // 2. (1)解析了配置文件,封装configuration对象 (2)创立了DefaultSqlSessionFactory工厂对象    SqlSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(resourceAsStream);    // 3.问题:openSession()执行逻辑是什么?    // 3. (1)创立事务对象 (2)创立了执行器对象cachingExecutor (3)创立了DefaultSqlSession对象    SqlSession sqlSession = sqlSessionFactory.openSession();    // 4. 委派给Executor来执行,Executor执行时又会调用很多其余组件(参数设置、解析sql的获取,sql的执行、后果集的封装)    User user = sqlSession.selectOne("com.itheima.mapper.UserMapper.findByCondition", 1);    User user1 = new User();    user1.setId(1);    user1.setUsername("zimu");    sqlSession.update("com.itheima.mapper.UserMapper.updateUser",user1);    sqlSession.commit();    User user2 = sqlSession.selectOne("com.itheima.mapper.UserMapper.findByCondition", 1);    System.out.println(user == user2);    System.out.println(user);    System.out.println(user2);    System.out.println("MyBatis源码环境搭建胜利....");    sqlSession.close();  }

查看控制台打印状况:

③、总结

1、第一次发动查问用户id为1的用户信息,先去找缓存中是否有id为1的用户信息,如果没有,从 数据库查问用户信息。失去用户信息,将用户信息存储到一级缓存中。

2、 如果两头sqlSession去执行commit操作(执行插入、更新、删除),则会清空SqlSession中的 一级缓存,这样做的目标为了让缓存中存储的是最新的信息,防止脏读。

3、 第二次发动查问用户id为1的用户信息,先去找缓存中是否有id为1的用户信息,缓存中有,直 接从缓存中获取用户信息

一级缓存原理探索与源码剖析

问题1:一级缓存 底层数据结构到底是什么?

问题2:一级缓存的工作流程是怎么的?

一级缓存 底层数据结构到底是什么?

之前说不同SqlSession的一级缓存互不影响,所以我从SqlSession这个类动手


能够看到,org.apache.ibatis.session.SqlSession中有一个和缓存无关的办法——clearCache()刷新缓存的办法,点进去,找到它的实现类DefaultSqlSession

  @Override  public void clearCache() {    executor.clearLocalCache();  }

再次点进去executor.clearLocalCache(),再次点进去并找到其实现类BaseExecutor

  @Override  public void clearLocalCache() {    if (!closed) {      localCache.clear();      localOutputParameterCache.clear();    }  

进入localCache.clear()办法。进入到了org.apache.ibatis.cache.impl.PerpetualCache类中

package org.apache.ibatis.cache.impl;import java.util.HashMap;import java.util.Map;import java.util.concurrent.locks.ReadWriteLock;import org.apache.ibatis.cache.Cache;import org.apache.ibatis.cache.CacheException;/** * @author Clinton Begin */public class PerpetualCache implements Cache {  private final String id;  private Map<Object, Object> cache = new HashMap<Object, Object>();  public PerpetualCache(String id) {    this.id = id;  }  //省略局部...  @Override  public void clear() {    cache.clear();  }  //省略局部...}

咱们看到了PerpetualCache类中有一个属性private Map<Object, Object> cache = new HashMap<Object, Object>(),很显著它是一个HashMap,咱们所调用的.clear()办法,实际上就是调用的Map的clear办法

得出结论:

一级缓存的数据结构的确是HashMap

一级缓存的执行流程

咱们进入到org.apache.ibatis.executor.Executor
看到一个办法CacheKey createCacheKey(MappedStatement ms, Object parameterObject, RowBounds rowBounds, BoundSql boundSql) ,见名思意是一个创立CacheKey的办法
找到它的实现类和办法org.apache.ibatis.executor.BaseExecuto.createCacheKey

咱们剖析一下创立CacheKey的这块代码:

public CacheKey createCacheKey(MappedStatement ms, Object parameterObject, RowBounds rowBounds, BoundSql boundSql) {    if (closed) {      throw new ExecutorException("Executor was closed.");    }    //初始化CacheKey    CacheKey cacheKey = new CacheKey();    //存入statementId    cacheKey.update(ms.getId());    //别离存入分页须要的Offset和Limit    cacheKey.update(rowBounds.getOffset());    cacheKey.update(rowBounds.getLimit());    //把从BoundSql中封装的sql取出并存入到cacheKey对象中    cacheKey.update(boundSql.getSql());    //上面这一块就是封装参数    List<ParameterMapping> parameterMappings = boundSql.getParameterMappings();    TypeHandlerRegistry typeHandlerRegistry = ms.getConfiguration().getTypeHandlerRegistry();    for (ParameterMapping parameterMapping : parameterMappings) {      if (parameterMapping.getMode() != ParameterMode.OUT) {        Object value;        String propertyName = parameterMapping.getProperty();        if (boundSql.hasAdditionalParameter(propertyName)) {          value = boundSql.getAdditionalParameter(propertyName);        } else if (parameterObject == null) {          value = null;        } else if (typeHandlerRegistry.hasTypeHandler(parameterObject.getClass())) {          value = parameterObject;        } else {          MetaObject metaObject = configuration.newMetaObject(parameterObject);          value = metaObject.getValue(propertyName);        }        cacheKey.update(value);      }    }    //从configuration对象中(也就是载入配置文件后寄存的对象)把EnvironmentId存入        /**     *     <environments default="development">     *         <environment id="development"> //就是这个id     *             <!--以后事务交由JDBC进行治理-->     *             <transactionManager type="JDBC"></transactionManager>     *             <!--以后应用mybatis提供的连接池-->     *             <dataSource type="POOLED">     *                 <property name="driver" value="${jdbc.driver}"/>     *                 <property name="url" value="${jdbc.url}"/>     *                 <property name="username" value="${jdbc.username}"/>     *                 <property name="password" value="${jdbc.password}"/>     *             </dataSource>     *         </environment>     *     </environments>     */    if (configuration.getEnvironment() != null) {      // issue #176      cacheKey.update(configuration.getEnvironment().getId());    }    //返回    return cacheKey;  }

咱们再点进去cacheKey.update()办法看一看

public class CacheKey implements Cloneable, Serializable {  private static final long serialVersionUID = 1146682552656046210L;  public static final CacheKey NULL_CACHE_KEY = new NullCacheKey();  private static final int DEFAULT_MULTIPLYER = 37;  private static final int DEFAULT_HASHCODE = 17;  private final int multiplier;  private int hashcode;  private long checksum;  private int count;  //值存入的中央  private transient List<Object> updateList;  //省略局部办法......  //省略局部办法......  public void update(Object object) {    int baseHashCode = object == null ? 1 : ArrayUtil.hashCode(object);     count++;    checksum += baseHashCode;    baseHashCode *= count;    hashcode = multiplier * hashcode + baseHashCode;    //看到把值传入到了一个list中    updateList.add(object);  }   //省略局部办法......}

咱们晓得了那些数据是在CacheKey对象中如何存储的了。上面咱们返回createCacheKey()办法。

咱们进入BaseExecutor,能够看到一个query()办法:


这里咱们很分明的看到,在执行query()办法前,CacheKey办法被创立了

咱们能够看到,创立CacheKey后调用了query()办法,咱们再次点进去:

在执行SQL前如何在一级缓存中找不到Key,那么将会执行sql,咱们来看一下执行sql前后会做些什么,进入list = queryFromDatabase(ms, parameter, rowBounds, resultHandler, key, boundSql);


剖析一下:

 private <E> List<E> queryFromDatabase(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException {    List<E> list;    //1. 把key存入缓存,value放一个占位符    localCache.putObject(key, EXECUTION_PLACEHOLDER);    try {      //2. 与数据库交互      list = doQuery(ms, parameter, rowBounds, resultHandler, boundSql);    } finally {      //3. 如果第2步出了什么异样,把第1步存入的key删除      localCache.removeObject(key);    }      //4. 把后果存入缓存    localCache.putObject(key, list);    if (ms.getStatementType() == StatementType.CALLABLE) {      localOutputParameterCache.putObject(key, parameter);    }    return list;  }

一级缓存源码剖析论断:

  1. 一级缓存的数据结构是一个HashMap<Object,Object>,它的value就是查问后果,它的key是CacheKeyCacheKey中有一个list属性,statementId,params,rowbounds,sql等参数都存入到了这个list
  2. 先创立CacheKey,会首先依据CacheKey查问缓存中有没有,如果有,就解决缓存中的参数,如果没有,就执行sql,执行sql后执行sql后把后果存入缓存

二级缓存

留神:Mybatis的二级缓存不是默认开启的,是须要通过配置能力应用的

启用二级缓存

分为三步走:

1)开启映射器配置文件中的缓存配置:

 <settings>    <setting name="cacheEnabled" value="true"/> </settings>

2) 在须要应用二级缓存的Mapper配置文件中配置<cache>标签

  <!--type:cache应用的类型,默认是PerpetualCache,这在一级缓存中提到过。      eviction: 定义回收的策略,常见的有FIFO,LRU。      flushInterval: 配置肯定工夫主动刷新缓存,单位是毫秒。      size: 最多缓存对象的个数。      readOnly: 是否只读,若配置可读写,则须要对应的实体类可能序列化。      blocking: 若缓存中找不到对应的key,是否会始终blocking,直到有对应的数据进入缓存。      -->  <cache></cache>

3)在具体CURD标签上配置 useCache=true

   <select id="findById" resultType="com.itheima.pojo.User" useCache="true">       select * from user where id = #{id}   </select>

** 留神:实体类要实现Serializable接口,因为二级缓存会将对象写进硬盘,就必须序列化,以及兼容对象在网络中的传输

具体实现

  /**   * 测试一级缓存   */  @Test  public void secondLevelCacheTest() throws IOException {    InputStream resourceAsStream = Resources.getResourceAsStream("sqlMapConfig.xml");    // 2. (1)解析了配置文件,封装configuration对象 (2)创立了DefaultSqlSessionFactory工厂对象    SqlSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(resourceAsStream);    // 3.问题:openSession()执行逻辑是什么?    // 3. (1)创立事务对象 (2)创立了执行器对象cachingExecutor (3)创立了DefaultSqlSession对象    SqlSession sqlSession1 = sqlSessionFactory.openSession();    // 发动第一次查问,查问ID为1的用户    User user1 = sqlSession1.selectOne("com.itheima.mapper.UserMapper.findByCondition", 1);    // ***必须调用sqlSession1.commit()或者close(),一级缓存中的内容才会刷新到二级缓存中    sqlSession1.commit();// close();    // 发动第二次查问,查问ID为1的用户    SqlSession sqlSession2 = sqlSessionFactory.openSession();    User user2 = sqlSession2.selectOne("com.itheima.mapper.UserMapper.findByCondition", 1);    System.out.println(user1 == user2);    System.out.println(user1);    System.out.println(user2);    sqlSession1.close();    sqlSession2.close();  }

二级缓存源码剖析

问题:

① cache标签如何被解析的(二级缓存的底层数据结构是什么?)?

② 同时开启一级缓存二级缓存,优先级?

③ 为什么只有执行sqlSession.commit或者sqlSession.close二级缓存才会失效

④ 更新办法为什么不会清空二级缓存?

标签 < cache/> 的解析

二级缓存和具体的命名空间绑定,一个Mapper中有一个Cache, 雷同Mapper中的MappedStatement共用同一个Cache

依据之前的mybatis源码分析,xml的解析工作次要交给XMLConfigBuilder.parse()办法来实现

  // XMLConfigBuilder.parse()  public Configuration parse() {      if (parsed) {          throw new BuilderException("Each XMLConfigBuilder can only be used once.");      }      parsed = true;      parseConfiguration(parser.evalNode("/configuration"));// 在这里      return configuration;  }   // parseConfiguration() // 既然是在xml中增加的,那么咱们就间接看对于mappers标签的解析 private void parseConfiguration(XNode root) {     try {         Properties settings = settingsAsPropertiess(root.evalNode("settings"));         propertiesElement(root.evalNode("properties"));         loadCustomVfs(settings);         typeAliasesElement(root.evalNode("typeAliases"));         pluginElement(root.evalNode("plugins"));         objectFactoryElement(root.evalNode("objectFactory"));         objectWrapperFactoryElement(root.evalNode("objectWrapperFactory"));         reflectionFactoryElement(root.evalNode("reflectionFactory"));         settingsElement(settings);         // read it after objectFactory and objectWrapperFactory issue #631         environmentsElement(root.evalNode("environments"));         databaseIdProviderElement(root.evalNode("databaseIdProvider"));         typeHandlerElement(root.evalNode("typeHandlers"));         // 就是这里         mapperElement(root.evalNode("mappers"));     } catch (Exception e) {         throw new BuilderException("Error parsing SQL Mapper Configuration. Cause: " + e, e);     } }   // mapperElement() private void mapperElement(XNode parent) throws Exception {     if (parent != null) {         for (XNode child : parent.getChildren()) {             if ("package".equals(child.getName())) {                 String mapperPackage = child.getStringAttribute("name");                 configuration.addMappers(mapperPackage);             } else {                 String resource = child.getStringAttribute("resource");                 String url = child.getStringAttribute("url");                 String mapperClass = child.getStringAttribute("class");                 // 依照咱们本例的配置,则间接走该if判断                 if (resource != null && url == null && mapperClass == null) {                     ErrorContext.instance().resource(resource);                     InputStream inputStream = Resources.getResourceAsStream(resource);                     XMLMapperBuilder mapperParser = new XMLMapperBuilder(inputStream, configuration, resource, configuration.getSqlFragments());                     // 生成XMLMapperBuilder,并执行其parse办法                     mapperParser.parse();                 } else if (resource == null && url != null && mapperClass == null) {                     ErrorContext.instance().resource(url);                     InputStream inputStream = Resources.getUrlAsStream(url);                     XMLMapperBuilder mapperParser = new XMLMapperBuilder(inputStream, configuration, url, configuration.getSqlFragments());                     mapperParser.parse();                 } else if (resource == null && url == null && mapperClass != null) {                     Class<?> mapperInterface = Resources.classForName(mapperClass);                     configuration.addMapper(mapperInterface);                 } else {                     throw new BuilderException("A mapper element may only specify a url, resource or class, but not more than one.");                 }             }         }     } } 

咱们来看看解析Mapper.xml

// XMLMapperBuilder.parse()public void parse() {    if (!configuration.isResourceLoaded(resource)) {        // 解析mapper属性        configurationElement(parser.evalNode("/mapper"));        configuration.addLoadedResource(resource);        bindMapperForNamespace();    }     parsePendingResultMaps();    parsePendingChacheRefs();    parsePendingStatements();} // configurationElement()private void configurationElement(XNode context) {    try {        String namespace = context.getStringAttribute("namespace");        if (namespace == null || namespace.equals("")) {            throw new BuilderException("Mapper's namespace cannot be empty");        }        builderAssistant.setCurrentNamespace(namespace);        cacheRefElement(context.evalNode("cache-ref"));        // 最终在这里看到了对于cache属性的解决        cacheElement(context.evalNode("cache"));        parameterMapElement(context.evalNodes("/mapper/parameterMap"));        resultMapElements(context.evalNodes("/mapper/resultMap"));        sqlElement(context.evalNodes("/mapper/sql"));        // 这里会将生成的Cache包装到对应的MappedStatement        buildStatementFromContext(context.evalNodes("select|insert|update|delete"));    } catch (Exception e) {        throw new BuilderException("Error parsing Mapper XML. Cause: " + e, e);    }} // cacheElement()private void cacheElement(XNode context) throws Exception {    if (context != null) {        //解析<cache/>标签的type属性,这里咱们能够自定义cache的实现类,比方redisCache,如果没有自定义,这里应用和一级缓存雷同的PERPETUAL        String type = context.getStringAttribute("type", "PERPETUAL");        Class<? extends Cache> typeClass = typeAliasRegistry.resolveAlias(type);        String eviction = context.getStringAttribute("eviction", "LRU");        Class<? extends Cache> evictionClass = typeAliasRegistry.resolveAlias(eviction);        Long flushInterval = context.getLongAttribute("flushInterval");        Integer size = context.getIntAttribute("size");        boolean readWrite = !context.getBooleanAttribute("readOnly", false);        boolean blocking = context.getBooleanAttribute("blocking", false);        Properties props = context.getChildrenAsProperties();        // 构建Cache对象        builderAssistant.useNewCache(typeClass, evictionClass, flushInterval, size, readWrite, blocking, props);    }}

先来看看是如何构建Cache对象的

MapperBuilderAssistant.useNewCache()

public Cache useNewCache(Class<? extends Cache> typeClass,                         Class<? extends Cache> evictionClass,                         Long flushInterval,                         Integer size,                         boolean readWrite,                         boolean blocking,                         Properties props) {    // 1.生成Cache对象    Cache cache = new CacheBuilder(currentNamespace)         //这里如果咱们定义了<cache/>中的type,就应用自定义的Cache,否则应用和一级缓存雷同的PerpetualCache        .implementation(valueOrDefault(typeClass, PerpetualCache.class))        .addDecorator(valueOrDefault(evictionClass, LruCache.class))        .clearInterval(flushInterval)        .size(size)        .readWrite(readWrite)        .blocking(blocking)        .properties(props)        .build();    // 2.增加到Configuration中    configuration.addCache(cache);    // 3.并将cache赋值给MapperBuilderAssistant.currentCache    currentCache = cache;    return cache;}

咱们看到一个Mapper.xml只会解析一次<cache/>标签,也就是只创立一次Cache对象,放进configuration中,并将cache赋值给MapperBuilderAssistant.currentCache

buildStatementFromContext(context.evalNodes("select|insert|update|delete"));将Cache包装到MappedStatement
// buildStatementFromContext()private void buildStatementFromContext(List<XNode> list) {    if (configuration.getDatabaseId() != null) {        buildStatementFromContext(list, configuration.getDatabaseId());    }    buildStatementFromContext(list, null);} //buildStatementFromContext()private void buildStatementFromContext(List<XNode> list, String requiredDatabaseId) {    for (XNode context : list) {        final XMLStatementBuilder statementParser = new XMLStatementBuilder(configuration, builderAssistant, context, requiredDatabaseId);        try {            // 每一条执行语句转换成一个MappedStatement            statementParser.parseStatementNode();        } catch (IncompleteElementException e) {            configuration.addIncompleteStatement(statementParser);        }    }} // XMLStatementBuilder.parseStatementNode();public void parseStatementNode() {    String id = context.getStringAttribute("id");    String databaseId = context.getStringAttribute("databaseId");    ...     Integer fetchSize = context.getIntAttribute("fetchSize");    Integer timeout = context.getIntAttribute("timeout");    String parameterMap = context.getStringAttribute("parameterMap");    String parameterType = context.getStringAttribute("parameterType");    Class<?> parameterTypeClass = resolveClass(parameterType);    String resultMap = context.getStringAttribute("resultMap");    String resultType = context.getStringAttribute("resultType");    String lang = context.getStringAttribute("lang");    LanguageDriver langDriver = getLanguageDriver(lang);     ...    // 创立MappedStatement对象    builderAssistant.addMappedStatement(id, sqlSource, statementType, sqlCommandType,                                        fetchSize, timeout, parameterMap, parameterTypeClass, resultMap, resultTypeClass,                                        resultSetTypeEnum, flushCache, useCache, resultOrdered,                                         keyGenerator, keyProperty, keyColumn, databaseId, langDriver, resultSets);} // builderAssistant.addMappedStatement()public MappedStatement addMappedStatement(    String id,    ...) {     if (unresolvedCacheRef) {        throw new IncompleteElementException("Cache-ref not yet resolved");    }     id = applyCurrentNamespace(id, false);    boolean isSelect = sqlCommandType == SqlCommandType.SELECT;    //创立MappedStatement对象    MappedStatement.Builder statementBuilder = new MappedStatement.Builder(configuration, id, sqlSource, sqlCommandType)        ...        .flushCacheRequired(valueOrDefault(flushCache, !isSelect))        .useCache(valueOrDefault(useCache, isSelect))        .cache(currentCache);// 在这里将之前生成的Cache封装到MappedStatement     ParameterMap statementParameterMap = getStatementParameterMap(parameterMap, parameterType, id);    if (statementParameterMap != null) {        statementBuilder.parameterMap(statementParameterMap);    }     MappedStatement statement = statementBuilder.build();    configuration.addMappedStatement(statement);    return statement;}

咱们看到将Mapper中创立的Cache对象,退出到了每个MappedStatement对象中,也就是同一个Mapper中所有的MappedStatement中的cache属性援用的是同一个

有对于<cache/>标签的解析就到这了。

查问源码剖析

CachingExecutor
// CachingExecutorpublic <E> List<E> query(MappedStatement ms, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler) throws SQLException {    BoundSql boundSql = ms.getBoundSql(parameterObject);    // 创立 CacheKey    CacheKey key = createCacheKey(ms, parameterObject, rowBounds, boundSql);    return query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);}public <E> List<E> query(MappedStatement ms, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql)    throws SQLException {    // 从 MappedStatement 中获取 Cache,留神这里的 Cache 是从MappedStatement中获取的    // 也就是咱们下面解析Mapper中<cache/>标签中创立的,它保留在Configration中    // 咱们在下面解析blog.xml时剖析过每一个MappedStatement都有一个Cache对象,就是这里    Cache cache = ms.getCache();    // 如果配置文件中没有配置 <cache>,则 cache 为空    if (cache != null) {        //如果须要刷新缓存的话就刷新:flushCache="true"        flushCacheIfRequired(ms);        if (ms.isUseCache() && resultHandler == null) {            ensureNoOutParams(ms, boundSql);            // 拜访二级缓存            List<E> list = (List<E>) tcm.getObject(cache, key);            // 缓存未命中            if (list == null) {                // 如果没有值,则执行查问,这个查问理论也是先走一级缓存查问,一级缓存也没有的话,则进行DB查问                list = delegate.<E>query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);                // 缓存查问后果                tcm.putObject(cache, key, list);            }            return list;        }    }    return delegate.<E>query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);}

如果设置了flushCache="true",则每次查问都会刷新缓存

<!-- 执行此语句清空缓存 --><select id="findbyId" resultType="com.itheima.pojo.user" useCache="true" flushCache="true" >    select * from t_demo</select>

如上,留神二级缓存是从 MappedStatement 中获取的。因为 MappedStatement 存在于全局配置中,能够多个 CachingExecutor 获取到,这样就会呈现线程平安问题。除此之外,若不加以控制,多个事务共用一个缓存实例,会导致脏读问题。至于脏读问题,须要借助其余类来解决,也就是下面代码中 tcm 变量对应的类型。上面剖析一下。

TransactionalCacheManager
/** 事务缓存管理器 */public class TransactionalCacheManager {    // Cache 与 TransactionalCache 的映射关系表    private final Map<Cache, TransactionalCache> transactionalCaches = new HashMap<Cache, TransactionalCache>();    public void clear(Cache cache) {        // 获取 TransactionalCache 对象,并调用该对象的 clear 办法,下同        getTransactionalCache(cache).clear();    }    public Object getObject(Cache cache, CacheKey key) {        // 间接从TransactionalCache中获取缓存        return getTransactionalCache(cache).getObject(key);    }    public void putObject(Cache cache, CacheKey key, Object value) {        // 间接存入TransactionalCache的缓存中        getTransactionalCache(cache).putObject(key, value);    }    public void commit() {        for (TransactionalCache txCache : transactionalCaches.values()) {            txCache.commit();        }    }    public void rollback() {        for (TransactionalCache txCache : transactionalCaches.values()) {            txCache.rollback();        }    }    private TransactionalCache getTransactionalCache(Cache cache) {        // 从映射表中获取 TransactionalCache        TransactionalCache txCache = transactionalCaches.get(cache);        if (txCache == null) {            // TransactionalCache 也是一种装璜类,为 Cache 减少事务性能            // 创立一个新的TransactionalCache,并将真正的Cache对象存进去            txCache = new TransactionalCache(cache);            transactionalCaches.put(cache, txCache);        }        return txCache;    }}

TransactionalCacheManager 外部保护了 Cache 实例与 TransactionalCache 实例间的映射关系,该类也仅负责保护两者的映射关系,真正做事的还是 TransactionalCache。TransactionalCache 是一种缓存装璜器,能够为 Cache 实例减少事务性能。上面剖析一下该类的逻辑。

TransactionalCache
public class TransactionalCache implements Cache {    //真正的缓存对象,和下面的Map<Cache, TransactionalCache>中的Cache是同一个    private final Cache delegate;    private boolean clearOnCommit;    // 在事务被提交前,所有从数据库中查问的后果将缓存在此汇合中    private final Map<Object, Object> entriesToAddOnCommit;    // 在事务被提交前,当缓存未命中时,CacheKey 将会被存储在此汇合中    private final Set<Object> entriesMissedInCache;    @Override    public Object getObject(Object key) {        // 查问的时候是间接从delegate中去查问的,也就是从真正的缓存对象中查问        Object object = delegate.getObject(key);        if (object == null) {            // 缓存未命中,则将 key 存入到 entriesMissedInCache 中            entriesMissedInCache.add(key);        }        if (clearOnCommit) {            return null;        } else {            return object;        }    }    @Override    public void putObject(Object key, Object object) {        // 将键值对存入到 entriesToAddOnCommit 这个Map中中,而非实在的缓存对象 delegate 中        entriesToAddOnCommit.put(key, object);    }    @Override    public Object removeObject(Object key) {        return null;    }    @Override    public void clear() {        clearOnCommit = true;        // 清空 entriesToAddOnCommit,但不清空 delegate 缓存        entriesToAddOnCommit.clear();    }    public void commit() {        // 依据 clearOnCommit 的值决定是否清空 delegate        if (clearOnCommit) {            delegate.clear();        }                // 刷新未缓存的后果到 delegate 缓存中        flushPendingEntries();        // 重置 entriesToAddOnCommit 和 entriesMissedInCache        reset();    }    public void rollback() {        unlockMissedEntries();        reset();    }    private void reset() {        clearOnCommit = false;        // 清空集合        entriesToAddOnCommit.clear();        entriesMissedInCache.clear();    }    private void flushPendingEntries() {        for (Map.Entry<Object, Object> entry : entriesToAddOnCommit.entrySet()) {            // 将 entriesToAddOnCommit 中的内容转存到 delegate 中            delegate.putObject(entry.getKey(), entry.getValue());        }        for (Object entry : entriesMissedInCache) {            if (!entriesToAddOnCommit.containsKey(entry)) {                // 存入空值                delegate.putObject(entry, null);            }        }    }    private void unlockMissedEntries() {        for (Object entry : entriesMissedInCache) {            try {                // 调用 removeObject 进行解锁                delegate.removeObject(entry);            } catch (Exception e) {                log.warn("...");            }        }    }}

存储二级缓存对象的时候是放到了TransactionalCache.entriesToAddOnCommit这个map中,然而每次查问的时候是间接从TransactionalCache.delegate中去查问的,所以这个二级缓存查询数据库后,设置缓存值是没有立即失效的,次要是因为间接存到 delegate 会导致脏数据问题

为何只有SqlSession提交或敞开之后?

那咱们来看下SqlSession.commit()办法做了什么

SqlSession

@Overridepublic void commit(boolean force) {    try {        // 次要是这句        executor.commit(isCommitOrRollbackRequired(force));        dirty = false;    } catch (Exception e) {        throw ExceptionFactory.wrapException("Error committing transaction.  Cause: " + e, e);    } finally {        ErrorContext.instance().reset();    }} // CachingExecutor.commit()@Overridepublic void commit(boolean required) throws SQLException {    delegate.commit(required);    tcm.commit();// 在这里} // TransactionalCacheManager.commit()public void commit() {    for (TransactionalCache txCache : transactionalCaches.values()) {        txCache.commit();// 在这里    }} // TransactionalCache.commit()public void commit() {    if (clearOnCommit) {        delegate.clear();    }    flushPendingEntries();//这一句    reset();} // TransactionalCache.flushPendingEntries()private void flushPendingEntries() {    for (Map.Entry<Object, Object> entry : entriesToAddOnCommit.entrySet()) {        // 在这里真正的将entriesToAddOnCommit的对象一一增加到delegate中,只有这时,二级缓存才真正的失效        delegate.putObject(entry.getKey(), entry.getValue());    }    for (Object entry : entriesMissedInCache) {        if (!entriesToAddOnCommit.containsKey(entry)) {            delegate.putObject(entry, null);        }    }}

二级缓存的刷新

咱们来看看SqlSession的更新操作

public int update(String statement, Object parameter) {    int var4;    try {        this.dirty = true;        MappedStatement ms = this.configuration.getMappedStatement(statement);        var4 = this.executor.update(ms, this.wrapCollection(parameter));    } catch (Exception var8) {        throw ExceptionFactory.wrapException("Error updating database.  Cause: " + var8, var8);    } finally {        ErrorContext.instance().reset();    }    return var4;}public int update(MappedStatement ms, Object parameterObject) throws SQLException {    this.flushCacheIfRequired(ms);    return this.delegate.update(ms, parameterObject);}private void flushCacheIfRequired(MappedStatement ms) {    //获取MappedStatement对应的Cache,进行清空    Cache cache = ms.getCache();    //SQL需设置flushCache="true" 才会执行清空    if (cache != null && ms.isFlushCacheRequired()) {  this.tcm.clear(cache);    }}

MyBatis二级缓存只实用于不常进行增、删、改的数据,比方国家行政区省市区街道数据。一但数据变更,MyBatis会清空缓存。因而二级缓存不适用于常常进行更新的数据。

总结:

在二级缓存的设计上,MyBatis大量地使用了装璜者模式,如CachingExecutor, 以及各种Cache接口的装璜器。

  • 二级缓存实现了Sqlsession之间的缓存数据共享,属于namespace级别
  • 二级缓存具备丰盛的缓存策略。
  • 二级缓存可由多个装璜器,与根底缓存组合而成
  • 二级缓存工作由 一个缓存装璜执行器CachingExecutor和 一个事务型预缓存TransactionalCache 实现

如果本文对您有帮忙,欢送关注点赞`,您的反对是我保持创作的能源。

转载请注明出处!