Promise实现
基于Promise
封装Ajax
- 返回一个新的
Promise
实例 - 创立
HMLHttpRequest
异步对象 - 调用
open
办法,关上url
,与服务器建设链接(发送前的一些解决) - 监听
Ajax
状态信息 如果
xhr.readyState == 4
(示意服务器响应实现,能够获取应用服务器的响应了)xhr.status == 200
,返回resolve
状态xhr.status == 404
,返回reject
状态
xhr.readyState !== 4
,把申请主体的信息基于send
发送给服务器
function ajax(url) { return new Promise((resolve, reject) => { let xhr = new XMLHttpRequest() xhr.open('get', url) xhr.onreadystatechange = () => { if (xhr.readyState == 4) { if (xhr.status >= 200 && xhr.status <= 300) { resolve(JSON.parse(xhr.responseText)) } else { reject('申请出错') } } } xhr.send() //发送hppt申请 })}let url = '/data.json'ajax(url).then(res => console.log(res)) .catch(reason => console.log(reason))
创立10个标签,点击的时候弹出来对应的序号
var afor(let i=0;i<10;i++){ a=document.createElement('a') a.innerHTML=i+'<br>' a.addEventListener('click',function(e){ console.log(this) //this为以后点击的<a> e.preventDefault() //如果调用这个办法,默认事件行为将不再触发。 //例如,在执行这个办法后,如果点击一个链接(a标签),浏览器不会跳转到新的 URL 去了。咱们能够用 event.isDefaultPrevented() 来确定这个办法是否(在那个事件对象上)被调用过了。 alert(i) }) const d=document.querySelector('div') d.appendChild(a) //append向一个已存在的元素追加该元素。}
前端手写面试题具体解答
递归反转链表
// node节点class Node { constructor(element,next) { this.element = element this.next = next } }class LinkedList { constructor() { this.head = null // 默认应该指向第一个节点 this.size = 0 // 通过这个长度能够遍历这个链表 } // 减少O(n) add(index,element) { if(arguments.length === 1) { // 向开端增加 element = index // 以后元素等于传递的第一项 index = this.size // 索引指向最初一个元素 } if(index < 0 || index > this.size) { throw new Error('增加的索引不失常') } if(index === 0) { // 间接找到头部 把头部改掉 性能更好 let head = this.head this.head = new Node(element,head) } else { // 获取以后头指针 let current = this.head // 不停遍历 直到找到最初一项 增加的索引是1就找到第0个的next赋值 for (let i = 0; i < index-1; i++) { // 找到它的前一个 current = current.next } // 让创立的元素指向上一个元素的下一个 // 看图了解next层级  current.next = new Node(element,current.next) // 让以后元素指向下一个元素的next } this.size++; } // 删除O(n) remove(index) { if(index < 0 || index >= this.size) { throw new Error('删除的索引不失常') } this.size-- if(index === 0) { let head = this.head this.head = this.head.next // 挪动指针地位 return head // 返回删除的元素 }else { let current = this.head for (let i = 0; i < index-1; i++) { // index-1找到它的前一个 current = current.next } let returnVal = current.next // 返回删除的元素 // 找到待删除的指针的上一个 current.next.next // 如删除200, 100=>200=>300 找到200的上一个100的next的next为300,把300赋值给100的next即可 current.next = current.next.next return returnVal } } // 查找O(n) get(index) { if(index < 0 || index >= this.size) { throw new Error('查找的索引不失常') } let current = this.head for (let i = 0; i < index; i++) { current = current.next } return current } reverse() { const reverse = head=>{ if(head == null || head.next == null) { return head } let newHead = reverse(head.next) // 从这个链表的最初一个开始反转,让以后下一个元素的next指向本人,本人指向null //  // 刚开始反转的是最初两个 head.next.next = head head.next = null return newHead } return reverse(this.head) }}let ll = new LinkedList()ll.add(1)ll.add(2)ll.add(3)ll.add(4)// console.dir(ll,{depth: 1000})console.log(ll.reverse())
设计一个办法提取对象中所有value大于2的键值对并返回最新的对象
实现:
var obj = { a: 1, b: 3, c: 4 }foo(obj) // { b: 3, c: 4 }
办法有很多种,这里提供一种比拟简洁的写法,用到了ES10
的Object.fromEntries()
:
var obj = { a: 1, b: 3, c: 4 }function foo (obj) { return Object.fromEntries( Object.entries(obj).filter(([key, value]) => value > 2) )}var obj2 = foo(obj) // { b: 3, c: 4 }console.log(obj2)
// ES8中 Object.entries()的作用:var obj = { a: 1, b: 2 }var entries = Object.entries(obj); // [['a', 1], ['b', 2]]// ES10中 Object.fromEntries()的作用:Object.fromEntries(entries); // { a: 1, b: 2 }
二分查找
function search(arr, target, start, end) { let targetIndex = -1; let mid = Math.floor((start + end) / 2); if (arr[mid] === target) { targetIndex = mid; return targetIndex; } if (start >= end) { return targetIndex; } if (arr[mid] < target) { return search(arr, target, mid + 1, end); } else { return search(arr, target, start, mid - 1); }}// const dataArr = [1, 2, 3, 4, 5, 6, 7, 8, 9];// const position = search(dataArr, 6, 0, dataArr.length - 1);// if (position !== -1) {// console.log(`指标元素在数组中的地位:${position}`);// } else {// console.log("指标元素不在数组中");// }
手写 Promise.race
该办法的参数是 Promise 实例数组, 而后其 then 注册的回调办法是数组中的某一个 Promise 的状态变为 fulfilled 的时候就执行. 因为 Promise 的状态只能扭转一次, 那么咱们只须要把 Promise.race 中产生的 Promise 对象的 resolve 办法, 注入到数组中的每一个 Promise 实例中的回调函数中即可.
Promise.race = function (args) { return new Promise((resolve, reject) => { for (let i = 0, len = args.length; i < len; i++) { args[i].then(resolve, reject) } })}
应用 reduce 求和
arr = [1,2,3,4,5,6,7,8,9,10],求和
let arr = [1,2,3,4,5,6,7,8,9,10]arr.reduce((prev, cur) => { return prev + cur }, 0)
arr = [1,2,3,[[4,5],6],7,8,9],求和
let arr = [1,2,3,4,5,6,7,8,9,10]arr.flat(Infinity).reduce((prev, cur) => { return prev + cur }, 0)
arr = [{a:1, b:3}, {a:2, b:3, c:4}, {a:3}],求和
let arr = [{a:9, b:3, c:4}, {a:1, b:3}, {a:3}] arr.reduce((prev, cur) => { return prev + cur["a"];}, 0)
验证是否是邮箱
function isEmail(email) { var regx = /^([a-zA-Z0-9_\-])[email protected]([a-zA-Z0-9_\-])+(\.[a-zA-Z0-9_\-])+$/; return regx.test(email);}
实现一个治理本地缓存过期的函数
封装一个能够设置过期工夫的localStorage
存储函数
class Storage{ constructor(name){ this.name = 'storage'; } //设置缓存 setItem(params){ let obj = { name:'', // 存入数据 属性 value:'',// 属性值 expires:"", // 过期工夫 startTime:new Date().getTime()//记录何时将值存入缓存,毫秒级 } let options = {}; //将obj和传进来的params合并 Object.assign(options,obj,params); if(options.expires){ //如果options.expires设置了的话 //以options.name为key,options为值放进去 localStorage.setItem(options.name,JSON.stringify(options)); }else{ //如果options.expires没有设置,就判断一下value的类型 let type = Object.prototype.toString.call(options.value); //如果value是对象或者数组对象的类型,就先用JSON.stringify转一下,再存进去 if(Object.prototype.toString.call(options.value) == '[object Object]'){ options.value = JSON.stringify(options.value); } if(Object.prototype.toString.call(options.value) == '[object Array]'){ options.value = JSON.stringify(options.value); } localStorage.setItem(options.name,options.value); } } //拿到缓存 getItem(name){ let item = localStorage.getItem(name); //先将拿到的试着进行json转为对象的模式 try{ item = JSON.parse(item); }catch(error){ //如果不行就不是json的字符串,就间接返回 item = item; } //如果有startTime的值,阐明设置了生效工夫 if(item.startTime){ let date = new Date().getTime(); //何时将值取出减去刚存入的工夫,与item.expires比拟,如果大于就是过期了,如果小于或等于就还没过期 if(date - item.startTime > item.expires){ //缓存过期,革除缓存,返回false localStorage.removeItem(name); return false; }else{ //缓存未过期,返回值 return item.value; } }else{ //如果没有设置生效工夫,间接返回值 return item; } } //移出缓存 removeItem(name){ localStorage.removeItem(name); } //移出全副缓存 clear(){ localStorage.clear(); }}
用法
let storage = new Storage();storage.setItem({ name:"name", value:"ppp"})
上面我把值取出来
let value = storage.getItem('name');console.log('我是value',value);
设置5秒过期
let storage = new Storage();storage.setItem({ name:"name", value:"ppp", expires: 5000})
// 过期后再取出来会变为 falselet value = storage.getItem('name');console.log('我是value',value);
实现apply办法
apply原理与call很类似,不多赘述
// 模仿 applyFunction.prototype.myapply = function(context, arr) { var context = Object(context) || window; context.fn = this; var result; if (!arr) { result = context.fn(); } else { var args = []; for (var i = 0, len = arr.length; i < len; i++) { args.push("arr[" + i + "]"); } result = eval("context.fn(" + args + ")"); } delete context.fn; return result;};
应用 setTimeout 实现 setInterval
setInterval 的作用是每隔一段指定工夫执行一个函数,然而这个执行不是真的到了工夫立刻执行,它真正的作用是每隔一段时间将事件退出事件队列中去,只有当以后的执行栈为空的时候,能力去从事件队列中取出事件执行。所以可能会呈现这样的状况,就是以后执行栈执行的工夫很长,导致事件队列里边积攒多个定时器退出的事件,当执行栈完结的时候,这些事件会顺次执行,因而就不能到距离一段时间执行的成果。
针对 setInterval 的这个毛病,咱们能够应用 setTimeout 递归调用来模仿 setInterval,这样咱们就确保了只有一个事件完结了,咱们才会触发下一个定时器事件,这样解决了 setInterval 的问题。
实现思路是应用递归函数,一直地去执行 setTimeout 从而达到 setInterval 的成果
function mySetInterval(fn, timeout) { // 控制器,管制定时器是否继续执行 var timer = { flag: true }; // 设置递归函数,模仿定时器执行。 function interval() { if (timer.flag) { fn(); setTimeout(interval, timeout); } } // 启动定时器 setTimeout(interval, timeout); // 返回控制器 return timer;}
解析 URL Params 为对象
let url = 'http://www.domain.com/?user=anonymous&id=123&id=456&city=%E5%8C%97%E4%BA%AC&enabled';parseParam(url)/* 后果{ user: 'anonymous', id: [ 123, 456 ], // 反复呈现的 key 要组装成数组,能被转成数字的就转成数字类型 city: '北京', // 中文需解码 enabled: true, // 未指定值得 key 约定为 true}*/
function parseParam(url) { const paramsStr = /.+\?(.+)$/.exec(url)[1]; // 将 ? 前面的字符串取出来 const paramsArr = paramsStr.split('&'); // 将字符串以 & 宰割后存到数组中 let paramsObj = {}; // 将 params 存到对象中 paramsArr.forEach(param => { if (/=/.test(param)) { // 解决有 value 的参数 let [key, val] = param.split('='); // 宰割 key 和 value val = decodeURIComponent(val); // 解码 val = /^\d+$/.test(val) ? parseFloat(val) : val; // 判断是否转为数字 if (paramsObj.hasOwnProperty(key)) { // 如果对象有 key,则增加一个值 paramsObj[key] = [].concat(paramsObj[key], val); } else { // 如果对象没有这个 key,创立 key 并设置值 paramsObj[key] = val; } } else { // 解决没有 value 的参数 paramsObj[param] = true; } }) return paramsObj;}
实现instanceOf
// 模仿 instanceoffunction instance_of(L, R) { //L 示意左表达式,R 示意右表达式 var O = R.prototype; // 取 R 的显示原型 L = L.__proto__; // 取 L 的隐式原型 while (true) { if (L === null) return false; if (O === L) // 这里重点:当 O 严格等于 L 时,返回 true return true; L = L.__proto__; }}
实现AJAX申请
AJAX是 Asynchronous JavaScript and XML 的缩写,指的是通过 JavaScript 的 异步通信,从服务器获取 XML 文档从中提取数据,再更新以后网页的对应局部,而不必刷新整个网页。
创立AJAX申请的步骤:
- 创立一个 XMLHttpRequest 对象。
- 在这个对象上应用 open 办法创立一个 HTTP 申请,open 办法所须要的参数是申请的办法、申请的地址、是否异步和用户的认证信息。
- 在发动申请前,能够为这个对象增加一些信息和监听函数。比如说能够通过 setRequestHeader 办法来为申请增加头信息。还能够为这个对象增加一个状态监听函数。一个 XMLHttpRequest 对象一共有 5 个状态,当它的状态变动时会触发onreadystatechange 事件,能够通过设置监听函数,来解决申请胜利后的后果。当对象的 readyState 变为 4 的时候,代表服务器返回的数据接管实现,这个时候能够通过判断申请的状态,如果状态是 2xx 或者 304 的话则代表返回失常。这个时候就能够通过 response 中的数据来对页面进行更新了。
- 当对象的属性和监听函数设置实现后,最初调用 sent 办法来向服务器发动申请,能够传入参数作为发送的数据体。
const SERVER_URL = "/server";let xhr = new XMLHttpRequest();// 创立 Http 申请xhr.open("GET", SERVER_URL, true);// 设置状态监听函数xhr.onreadystatechange = function() { if (this.readyState !== 4) return; // 当申请胜利时 if (this.status === 200) { handle(this.response); } else { console.error(this.statusText); }};// 设置申请失败时的监听函数xhr.onerror = function() { console.error(this.statusText);};// 设置申请头信息xhr.responseType = "json";xhr.setRequestHeader("Accept", "application/json");// 发送 Http 申请xhr.send(null);
Promise并行限度
就是实现有并行限度的Promise调度器问题
class Scheduler { constructor() { this.queue = []; this.maxCount = 2; this.runCounts = 0; } add(promiseCreator) { this.queue.push(promiseCreator); } taskStart() { for (let i = 0; i < this.maxCount; i++) { this.request(); } } request() { if (!this.queue || !this.queue.length || this.runCounts >= this.maxCount) { return; } this.runCounts++; this.queue.shift()().then(() => { this.runCounts--; this.request(); }); }}const timeout = time => new Promise(resolve => { setTimeout(resolve, time);})const scheduler = new Scheduler();const addTask = (time,order) => { scheduler.add(() => timeout(time).then(()=>console.log(order)))}addTask(1000, '1');addTask(500, '2');addTask(300, '3');addTask(400, '4');scheduler.taskStart()// 2// 3// 1// 4
用Promise实现图片的异步加载
let imageAsync=(url)=>{ return new Promise((resolve,reject)=>{ let img = new Image(); img.src = url; img.nlad=()=>{ console.log(`图片申请胜利,此处进行通用操作`); resolve(image); } img.nerrr=(err)=>{ console.log(`失败,此处进行失败的通用操作`); reject(err); } }) }imageAsync("url").then(()=>{ console.log("加载胜利");}).catch((error)=>{ console.log("加载失败");})
实现类的继承
类的继承在几年前是重点内容,有n种继承形式各有优劣,es6遍及后越来越不重要,那么多种写法有点『回字有四样写法』的意思,如果还想深刻了解的去看红宝书即可,咱们目前只实现一种最现实的继承形式。
function Parent(name) { this.parent = name}Parent.prototype.say = function() { console.log(`${this.parent}: 你打篮球的样子像kunkun`)}function Child(name, parent) { // 将父类的构造函数绑定在子类上 Parent.call(this, parent) this.child = name}/** 1. 这一步不必Child.prototype =Parent.prototype的起因是怕共享内存,批改父类原型对象就会影响子类 2. 不必Child.prototype = new Parent()的起因是会调用2次父类的构造方法(另一次是call),会存在一份多余的父类实例属性3. Object.create是创立了父类原型的正本,与父类原型齐全隔离*/Child.prototype = Object.create(Parent.prototype);Child.prototype.say = function() { console.log(`${this.parent}好,我是练习时长两年半的${this.child}`);}// 留神记得把子类的结构指向子类自身Child.prototype.constructor = Child;var parent = new Parent('father');parent.say() // father: 你打篮球的样子像kunkunvar child = new Child('cxk', 'father');child.say() // father好,我是练习时长两年半的cxk
手写防抖函数
函数防抖是指在事件被触发 n 秒后再执行回调,如果在这 n 秒内事件又被触发,则从新计时。这能够应用在一些点击申请的事件上,防止因为用户的屡次点击向后端发送屡次申请。
// 函数防抖的实现function debounce(fn, wait) { let timer = null; return function() { let context = this, args = arguments; // 如果此时存在定时器的话,则勾销之前的定时器从新记时 if (timer) { clearTimeout(timer); timer = null; } // 设置定时器,使事件间隔指定事件后执行 timer = setTimeout(() => { fn.apply(context, args); }, wait); };}
对象数组列表转成树形构造(解决菜单)
[ { id: 1, text: '节点1', parentId: 0 //这里用0示意为顶级节点 }, { id: 2, text: '节点1_1', parentId: 1 //通过这个字段来确定子父级 } ...]转成[ { id: 1, text: '节点1', parentId: 0, children: [ { id:2, text: '节点1_1', parentId:1 } ] }]
实现代码如下:
function listToTree(data) { let temp = {}; let treeData = []; for (let i = 0; i < data.length; i++) { temp[data[i].id] = data[i]; } for (let i in temp) { if (+temp[i].parentId != 0) { if (!temp[temp[i].parentId].children) { temp[temp[i].parentId].children = []; } temp[temp[i].parentId].children.push(temp[i]); } else { treeData.push(temp[i]); } } return treeData;}
二叉树深度遍历
// 二叉树深度遍历class Node { constructor(element, parent) { this.parent = parent // 父节点 this.element = element // 以后存储内容 this.left = null // 左子树 this.right = null // 右子树 }}class BST { constructor(compare) { this.root = null // 树根 this.size = 0 // 树中的节点个数 this.compare = compare || this.compare } compare(a,b) { return a - b } add(element) { if(this.root === null) { this.root = new Node(element, null) this.size++ return } // 获取根节点 用以后增加的进行判断 放右边还是放左边 let currentNode = this.root let compare let parent = null while (currentNode) { compare = this.compare(element, currentNode.element) parent = currentNode // 先将父亲保存起来 // currentNode要不停的变动 if(compare > 0) { currentNode = currentNode.right } else if(compare < 0) { currentNode = currentNode.left } else { currentNode.element = element // 相等时 先笼罩后续解决 } } let newNode = new Node(element, parent) if(compare > 0) { parent.right = newNode } else if(compare < 0) { parent.left = newNode } this.size++ } // 前序遍历 preorderTraversal(visitor) { const traversal = node=>{ if(node === null) return visitor.visit(node.element) traversal(node.left) traversal(node.right) } traversal(this.root) } // 中序遍历 inorderTraversal(visitor) { const traversal = node=>{ if(node === null) return traversal(node.left) visitor.visit(node.element) traversal(node.right) } traversal(this.root) } // 后序遍历 posterorderTraversal(visitor) { const traversal = node=>{ if(node === null) return traversal(node.left) traversal(node.right) visitor.visit(node.element) } traversal(this.root) } // 反转二叉树:无论先序、中序、后序、层级都能够反转 invertTree() { const traversal = node=>{ if(node === null) return let temp = node.left node.left = node.right node.right = temp traversal(node.left) traversal(node.right) } traversal(this.root) return this.root }}
先序遍历
二叉树的遍历形式
// 测试var bst = new BST((a,b)=>a.age-b.age) // 模仿sort办法bst.add({age: 10})bst.add({age: 8})bst.add({age:19})bst.add({age:6})bst.add({age: 15})bst.add({age: 22})bst.add({age: 20})// 先序遍历// console.log(bst.preorderTraversal(),'先序遍历')// console.log(bst.inorderTraversal(),'中序遍历')// // console.log(bst.posterorderTraversal(),'后序遍历')// 深度遍历:先序遍历、中序遍历、后续遍历// 广度遍历:档次遍历(同层级遍历)// 都可拿到树中的节点// 应用访问者模式class Visitor { constructor() { this.visit = function (elem) { elem.age = elem.age*2 } }}// bst.posterorderTraversal({// visit(elem) {// elem.age = elem.age*10// }// })// 不能通过索引操作 拿到节点去操作// bst.posterorderTraversal(new Visitor())console.log(bst.invertTree(),'反转二叉树')