Flink 源码剖析之 Client 解析流程剖析
抛出问题
首先来思考一个问题,咱们在提交 Flink 工作的时候,在 Flink 客户端执行了上面的命令后,Flink 客户端做了哪些事件?又是怎么执行咱们本人写的代码的?上面就来一层一层的揭开 flink-client 的神秘面纱。
flink run -d -m yarn-cluster \-Dyarn.application.name=FlinkStreamingNewDemoHome \-Dyarn.application.queue=flink \-Dmetrics.reporter.promgateway.groupingKey="jobname=FlinkStreamingNewDemoHome" \-Dmetrics.reporter.promgateway.jobName=FlinkStreamingNewDemoHome \-c flink.stream.FlinkStreamingNewDemo \-Denv.java.opts="-Dflink_job_name=FlinkStreamingNewDemoHome" \/home/jason/bigdata/jar/flink-1.14.0-1.0-SNAPSHOT.jar
要解答这个问题,就先要弄明确,当执行下面命令的时候,实际上底层是在执行哪些代码?咱们能够通过查看 flink 脚本找到答案。
# Add HADOOP_CLASSPATH to allow the usage of Hadoop file systemsexec "${JAVA_RUN}" $JVM_ARGS $FLINK_ENV_JAVA_OPTS "${log_setting[@]}" -classpath "`manglePathList "$CC_CLASSPATH:$INTERNAL_HADOOP_CLASSPATHS"`" org.apache.flink.client.cli.CliFrontend "$@"
你会发现脚本的最初一行,实际上是通过 Java 命令执行 org.apache.flink.client.cli.CliFrontend 这个对象的,而后把下面的一大堆 Flink 命令当成参数传入到 main 办法里,咱们先在 IDEA 外面找到对应的代码。
CliFrontend
能够看到 CliFrontend 这个类是位于 flink-clients 模块下的,接着来看一下 CliFrontend 类的几个重要成员变量。
间接找到 CliFrontend#main 办法。
CliFrontend#main 源码剖析
/** Submits the job based on the arguments. */public static void main(final String[] args) { // 获取 JVM 信息、hadoop 信息等打印日志 EnvironmentInformation.logEnvironmentInfo(LOG, "Command Line Client", args); // 1. find the configuration directory // 获取 flink 的配置文件门路 即: flink/conf/flink-conf.yaml final String configurationDirectory = getConfigurationDirectoryFromEnv(); // 2. load the global configuration // 解析并加载 flink-conf.yaml 配置文件中的配置到 Configuration(实质上是一个 Map) final Configuration configuration = GlobalConfiguration.loadConfiguration(configurationDirectory); // 3. load the custom command lines // 初始化 3 种不同的 CLI 别离是 GenericCLI 对应的是 per-job 模式,flinkYarnSessionCLI 对应的是 yarn-session 模式,以及 DefaultCLI 对应的是 standalone 模式 final List<CustomCommandLine> customCommandLines = loadCustomCommandLines(configuration, configurationDirectory); int retCode = 31; try { // 初始化 CliFrontend 客户端对象 final CliFrontend cli = new CliFrontend(configuration, customCommandLines); SecurityUtils.install(new SecurityConfiguration(cli.configuration)); // 调用 parseAndRun 执行 retCode = SecurityUtils.getInstalledContext().runSecured(() -> cli.parseAndRun(args)); } catch (Throwable t) { final Throwable strippedThrowable = ExceptionUtils.stripException(t, UndeclaredThrowableException.class); LOG.error("Fatal error while running command line interface.", strippedThrowable); strippedThrowable.printStackTrace(); } finally { System.exit(retCode); }}
main 办法的代码逻辑十分清晰,大抵能够分为上面 5 个步骤:
- 获取 flink 的配置文件门路 即: flink/conf/flink-conf.yaml
- 解析并加载 flink-conf.yaml 配置文件中的配置到 Configuration(实质上是一个 Map)
- 初始化 3 种不同的 CLI 别离是 GenericCLI 对应的是 per-job 模式,flinkYarnSessionCLI 对应的是 yarn-session 模式,以及 DefaultCLI 对应的是 standalone 模式
- 初始化 CliFrontend 客户端对象
- 调用 parseAndRun 解析并执行程序
上面就来看一下每个步骤具体做了哪些事件。
flink-conf.yaml 获取配置文件源码
public static String getConfigurationDirectoryFromEnv() { String location = System.getenv(ConfigConstants.ENV_FLINK_CONF_DIR); if (location != null) { if (new File(location).exists()) { return location; } else { throw new RuntimeException( "The configuration directory '" + location + "', specified in the '" + ConfigConstants.ENV_FLINK_CONF_DIR + "' environment variable, does not exist."); } } else if (new File(CONFIG_DIRECTORY_FALLBACK_1).exists()) { location = CONFIG_DIRECTORY_FALLBACK_1; } else if (new File(CONFIG_DIRECTORY_FALLBACK_2).exists()) { location = CONFIG_DIRECTORY_FALLBACK_2; } else { throw new RuntimeException( "The configuration directory was not specified. " + "Please specify the directory containing the configuration file through the '" + ConfigConstants.ENV_FLINK_CONF_DIR + "' environment variable."); } return location;}
代码比较简单,间接获取零碎环境变量的值,而后返回 flink-conf.yaml 配置文件的门路。
flink-conf.yaml 解析配置文件源码
private static Configuration loadYAMLResource(File file) { final Configuration config = new Configuration(); try (BufferedReader reader = new BufferedReader(new InputStreamReader(new FileInputStream(file)))) { String line; int lineNo = 0; while ((line = reader.readLine()) != null) { lineNo++; // 1. check for comments String[] comments = line.split("#", 2); String conf = comments[0].trim(); // 2. get key and value if (conf.length() > 0) { String[] kv = conf.split(": ", 2); // skip line with no valid key-value pair if (kv.length == 1) { LOG.warn( "Error while trying to split key and value in configuration file " + file + ":" + lineNo + ": \"" + line + "\""); continue; } // 获取配置的 key: value // 比方,jobmanager.rpc.address: storm1 // key: jobmanager.rpc.address // value: storm1 String key = kv[0].trim(); String value = kv[1].trim(); // sanity check if (key.length() == 0 || value.length() == 0) { LOG.warn( "Error after splitting key and value in configuration file " + file + ":" + lineNo + ": \"" + line + "\""); continue; } LOG.info( "Loading configuration property: {}, {}", key, isSensitive(key) ? HIDDEN_CONTENT : value); // 退出到 config,相当于是一个 map config.setString(key, value); } } } catch (IOException e) { throw new RuntimeException("Error parsing YAML configuration.", e); } return config;}
loadConfiguration 办法最终会调用 loadYAMLResource 办法进行解析 flink-conf.yaml 配置文件,通过一行行的读取配置,而后把配置的 key,value 退出到 Configuration 中,Configuration 的实质就是一个 map,用来保留 flink 的配置信息。
CustomCommandLine 初始化源码
public static List<CustomCommandLine> loadCustomCommandLines( Configuration configuration, String configurationDirectory) { List<CustomCommandLine> customCommandLines = new ArrayList<>(); customCommandLines.add(new GenericCLI(configuration, configurationDirectory)); // Command line interface of the YARN session, with a special initialization here // to prefix all options with y/yarn. final String flinkYarnSessionCLI = "org.apache.flink.yarn.cli.FlinkYarnSessionCli"; try { customCommandLines.add( loadCustomCommandLine( flinkYarnSessionCLI, configuration, configurationDirectory, "y", "yarn")); } catch (NoClassDefFoundError | Exception e) { final String errorYarnSessionCLI = "org.apache.flink.yarn.cli.FallbackYarnSessionCli"; try { LOG.info("Loading FallbackYarnSessionCli"); customCommandLines.add(loadCustomCommandLine(errorYarnSessionCLI, configuration)); } catch (Exception exception) { LOG.warn("Could not load CLI class {}.", flinkYarnSessionCLI, e); } } // Tips: DefaultCLI must be added at last, because getActiveCustomCommandLine(..) will get // the // active CustomCommandLine in order and DefaultCLI isActive always return true. customCommandLines.add(new DefaultCLI()); return customCommandLines;}
loadCustomCommandLines 次要是用来初始化 CustomCommandLine 的,返回一个 CustomCommandLine 的汇合。
这里次要有三种不同的 CustomCommandLine 实现类,别离是 GenericCLI,FlinkYarnSessionCli,DefaultCLI。
三种不同的实现对应三种不同的模式,GenericCLI 对应的是 per-job 模式,flinkYarnSessionCLI 对应的是 yarn-session 模式,以及 DefaultCLI 对应的是 standalone 模式。
CliFrontend 初始化源码
// 初始化 CliFrontend 客户端对象final CliFrontend cli = new CliFrontend(configuration, customCommandLines);public CliFrontend( Configuration configuration, ClusterClientServiceLoader clusterClientServiceLoader, List<CustomCommandLine> customCommandLines) { this.configuration = checkNotNull(configuration); this.customCommandLines = checkNotNull(customCommandLines); this.clusterClientServiceLoader = checkNotNull(clusterClientServiceLoader); FileSystem.initialize( configuration, PluginUtils.createPluginManagerFromRootFolder(configuration)); this.customCommandLineOptions = new Options(); for (CustomCommandLine customCommandLine : customCommandLines) { customCommandLine.addGeneralOptions(customCommandLineOptions); customCommandLine.addRunOptions(customCommandLineOptions); } this.clientTimeout = configuration.get(ClientOptions.CLIENT_TIMEOUT); this.defaultParallelism = configuration.getInteger(CoreOptions.DEFAULT_PARALLELISM); }
通过下面第二步和第三步获取到的 configuration 和 customCommandLines 信息初始化 CliFrontend 对象。
parseAndRun 解析并运行程序源码解析
public int parseAndRun(String[] args) { // check for action if (args.length < 1) { CliFrontendParser.printHelp(customCommandLines); System.out.println("Please specify an action."); return 1; } // get action // 其实这里就是 run String action = args[0]; // remove action from parameters final String[] params = Arrays.copyOfRange(args, 1, args.length); try { // do action switch (action) { case ACTION_RUN: // 所以会走到这里 run(params); return 0; case ACTION_RUN_APPLICATION: runApplication(params); return 0; case ACTION_LIST: list(params); return 0; case ACTION_INFO: info(params); return 0; case ACTION_CANCEL: cancel(params); return 0; case ACTION_STOP: stop(params); return 0; case ACTION_SAVEPOINT: savepoint(params); return 0; case "-h": case "--help": CliFrontendParser.printHelp(customCommandLines); return 0; case "-v": case "--version": String version = EnvironmentInformation.getVersion(); String commitID = EnvironmentInformation.getRevisionInformation().commitId; System.out.print("Version: " + version); System.out.println( commitID.equals(EnvironmentInformation.UNKNOWN) ? "" : ", Commit ID: " + commitID); return 0; default: System.out.printf("\"%s\" is not a valid action.\n", action); System.out.println(); System.out.println( "Valid actions are \"run\", \"run-application\", \"list\", \"info\", \"savepoint\", \"stop\", or \"cancel\"."); System.out.println(); System.out.println( "Specify the version option (-v or --version) to print Flink version."); System.out.println(); System.out.println( "Specify the help option (-h or --help) to get help on the command."); return 1; } } catch (CliArgsException ce) { return handleArgException(ce); } catch (ProgramParametrizationException ppe) { return handleParametrizationException(ppe); } catch (ProgramMissingJobException pmje) { return handleMissingJobException(); } catch (Exception e) { return handleError(e); }}
后面 4 个步骤都是在做一些筹备工作,最初一步才是真正开始执行程序,因为咱们执行的是 flink run 命令,所以会走到 run(params) 办法外面。
run(params) 源码
protected void run(String[] args) throws Exception { LOG.info("Running 'run' command."); // 获取所有的 flink 命令 final Options commandOptions = CliFrontendParser.getRunCommandOptions(); // 获取输出参数外面的 flink 命令 final CommandLine commandLine = getCommandLine(commandOptions, args, true); // evaluate help flag // 如果是 help 打印帮忙命令信息 if (commandLine.hasOption(HELP_OPTION.getOpt())) { CliFrontendParser.printHelpForRun(customCommandLines); return; } // 获取处于 active 状态的 CLI final CustomCommandLine activeCommandLine = validateAndGetActiveCommandLine(checkNotNull(commandLine)); // 构建 ProgramOptions 对象 final ProgramOptions programOptions = ProgramOptions.create(commandLine); // 获取用户提交的 jar 包和依赖包 final List<URL> jobJars = getJobJarAndDependencies(programOptions); final Configuration effectiveConfiguration = getEffectiveConfiguration(activeCommandLine, commandLine, programOptions, jobJars); LOG.debug("Effective executor configuration: {}", effectiveConfiguration); try (PackagedProgram program = getPackagedProgram(programOptions, effectiveConfiguration)) { // 真正的执行程序 executeProgram(effectiveConfiguration, program); }}
首先会获取 flink 所有的 options,而后在获取咱们输出的 flink 命令。如果有 h 的话就会打印 help 信息。接下来会获取处于 active 状态的 CustomCommandLine,这里获取到的应该是 GenericCLI 。而后获取用户提交的 jar 包和依赖包,最初调用 executeProgram 开始真正的执行程序。
public static void executeProgram( PipelineExecutorServiceLoader executorServiceLoader, Configuration configuration, PackagedProgram program, boolean enforceSingleJobExecution, boolean suppressSysout) throws ProgramInvocationException { checkNotNull(executorServiceLoader); // 获取用户代码的类加载器,默认状况下是 ChildFirstClassLoader 这个能够在配置文件外面配置 final ClassLoader userCodeClassLoader = program.getUserCodeClassLoader(); // 获取以后线程的类加载器 final ClassLoader contextClassLoader = Thread.currentThread().getContextClassLoader(); try { // 把以后线程的类加载器设置为 ChildFirstClassLoader Thread.currentThread().setContextClassLoader(userCodeClassLoader); LOG.info( "Starting program (detached: {})", !configuration.getBoolean(DeploymentOptions.ATTACHED)); // 初始化上下文的配置信息 ContextEnvironment ContextEnvironment.setAsContext( executorServiceLoader, configuration, userCodeClassLoader, enforceSingleJobExecution, suppressSysout); // 初始化 StreamContextEnvironment StreamContextEnvironment.setAsContext( executorServiceLoader, configuration, userCodeClassLoader, enforceSingleJobExecution, suppressSysout); try { // 通过反射去执行用户编写的代码 program.invokeInteractiveModeForExecution(); } finally { ContextEnvironment.unsetAsContext(); StreamContextEnvironment.unsetAsContext(); } } finally { // 最初在把类加载器切换回去 Thread.currentThread().setContextClassLoader(contextClassLoader); }}
先是会获取用户代码的类加载器,默认状况下是 ChildFirstClassLoader 这个能够在 flink-conf.yaml 配置文件外面配置
#Flink的类加载策略classloader.resolve-order: child-first/parent-first
这里有一个十分有意思的中央是,获取以后线程的类加载器 contextClassLoader ,而后把以后线程的类加载器设置为 ChildFirstClassLoader 或者 ParentFirstClassLoader 紧接着初始化 ContextEnvironment 和 StreamContextEnvironment 的上下文配置信息,最终通过反射的形式调用 invokeInteractiveModeForExecution 办法,也就是在执行用户的代码,留神最初在 finally 外面又把线程的类加载器切换到了之前的 contextClassLoader,相当于做了一个线程类加载器的切换,也就是通过这种形式,实现了用户代码和 flink 框架代码不发生冲突。
callMainMethod 源码
private static void callMainMethod(Class<?> entryClass, String[] args) throws ProgramInvocationException { Method mainMethod; if (!Modifier.isPublic(entryClass.getModifiers())) { throw new ProgramInvocationException( "The class " + entryClass.getName() + " must be public."); } try { // 获取到用户编写代码类的 main 办法 mainMethod = entryClass.getMethod("main", String[].class); } catch (NoSuchMethodException e) { throw new ProgramInvocationException( "The class " + entryClass.getName() + " has no main(String[]) method."); } catch (Throwable t) { throw new ProgramInvocationException( "Could not look up the main(String[]) method from the class " + entryClass.getName() + ": " + t.getMessage(), t); } if (!Modifier.isStatic(mainMethod.getModifiers())) { throw new ProgramInvocationException( "The class " + entryClass.getName() + " declares a non-static main method."); } if (!Modifier.isPublic(mainMethod.getModifiers())) { throw new ProgramInvocationException( "The class " + entryClass.getName() + " declares a non-public main method."); } try { // 调用 invoke 办法的时候就会走到用户代码的 main 办法外面 mainMethod.invoke(null, (Object) args); } catch (IllegalArgumentException e) { throw new ProgramInvocationException( "Could not invoke the main method, arguments are not matching.", e); } catch (IllegalAccessException e) { throw new ProgramInvocationException( "Access to the main method was denied: " + e.getMessage(), e); } catch (InvocationTargetException e) { Throwable exceptionInMethod = e.getTargetException(); if (exceptionInMethod instanceof Error) { throw (Error) exceptionInMethod; } else if (exceptionInMethod instanceof ProgramParametrizationException) { throw (ProgramParametrizationException) exceptionInMethod; } else if (exceptionInMethod instanceof ProgramInvocationException) { throw (ProgramInvocationException) exceptionInMethod; } else { throw new ProgramInvocationException( "The main method caused an error: " + exceptionInMethod.getMessage(), exceptionInMethod); } } catch (Throwable t) { throw new ProgramInvocationException( "An error occurred while invoking the program's main method: " + t.getMessage(), t); }}
最终调用的是 callMainMethod 办法。首先会判断该类是否是 public 的,如果是的话,会获取到 main 办法,而后再次判断 mainMethod 是否是 public static 润饰的,都满足条件的话,最初调用 invoke 办法,这个时候就会来到用户本人的代码,比方下面提交的代码是 flink.stream.FlinkStreamingNewDemo 那么就会执行 FlinkStreamingNewDemo 类的 main 办法。通过下面一系列的解析配置,初始化最终终于走到咱们的代码外面了。
本文由mdnice多平台公布