• 背景:
    我的项目须要对接confluent-kafka压测,查看生产端的性能状况。并且confluent-kafka开了SSL验证,须要账号密码,如果间接用jmeter的kafka插件,是不满足应用需要,所以只能独自从新写一个对接confluent-kafka的插件!!!
  • 测试场景
    模仿场景,1并发,发送100笔音讯,发送雷同的内容
  • 先上后果:
    1.第一次写的 JavaSampler 插件后果:
    均匀每笔600ms左右,TPS只有1.7/s

    1. 第二次批改后的 JavaSampler 插件后果:

    均匀每笔7ms左右,TPS能到130/s,(如果不限度申请量,TPS还能再高点,能到1000左右)

从下面的后果很显著的看进去,第一个写的就是垃圾,(ps. 因为之前用spring框架曾经验证过了,每秒confluent-kafka的性能能到1000左右)所以,排除人家中间件的锅,那就是本人写了个垃圾进去,而后就是漫长的排查之路!!!

  • 上代码吧:
    public void product(Properties props, String topic, String key, String value) throws InterruptedException, InstantiationException, IllegalAccessException {        //判断topic,来实例化对象        Class avroType = null;        switch (topic){            case "staging-shareservice-masterdata-style":                avroType = ProductStyle.class;                break;            case "staging-shareservice-masterdata-styleoption":                avroType = ProductStyleOption.class;                break;            case "staging-shareservice-masterdata-sku":                avroType = ProductSku.class;                break;            case "staging-shareservice-masterdata-price":                avroType = Price.class;                break;            case "staging-shareservice-masterdata-location-standard" :                avroType = LocationStandard.class;        }        //序列化value        Object avroValue = avroValueSerializer.avroValue(value, avroType);        //筹备生产者        KafkaProducer<String, Object> producer = new KafkaProducer<>(props);        ProducerRecord<String, Object> record = new ProducerRecord<>(topic, key, avroValue);        try {            // 1、发送音讯            producer.send(record);        } catch (Exception e) {            e.printStackTrace();        }//        producer.close();    }

就是下面这段发送逻辑,太菜了,看jmeter日志,发现频繁的打印配置信息,每发一次打印一次,很显著每次发送都加载了配置信息导致的,配置信息个别都是初始化的时候加载一次,前面复用就行了,好了点找到了,接下来就是看哪里加载的配置信息了,而后就开始低效调优。

1、先把配置类初始化放setup里,后果不言而喻有效;
2、把KafkaProducer也放setup中,尝试了一下,发现效果显著;

哈哈,问题找到, 成果也很显著,最初的代码

 myKafkaProducer myKafkaProducer = null;    Properties props = null;    //筹备生产者    KafkaProducer<String, Object> producer = null;//    发送内容对象    ProducerRecord<String, Object> record = null;    //序列化value类型    Object avroValue = null;    //初始化    public void setupTest(JavaSamplerContext context) {        myKafkaProducer = new myKafkaProducer();        String paramBroker = context.getParameter("broker");        String paramTopic = context.getParameter("topic");        String paramKey = context.getParameter("key");        String paramValue = context.getParameter("value");        //初始化配置信息        props = myKafkaProducer.initNewConfig(paramBroker);        //筹备生产者        producer = new KafkaProducer<>(props);        //判断topic,来实例化对象        Class avroType = null;        switch (paramTopic){            case "staging-shareservice-masterdata-style":                avroType = ProductStyle.class;                break;            case "staging-shareservice-masterdata-styleoption":                avroType = ProductStyleOption.class;                break;            case "staging-shareservice-masterdata-sku":                avroType = ProductSku.class;                break;            case "staging-shareservice-masterdata-price":                avroType = Price.class;                break;            case "staging-shareservice-masterdata-location-standard" :                avroType = LocationStandard.class;        }        try {            avroValue = avroValueSerializer.avroValue(paramValue, avroType);        } catch (InstantiationException e) {            e.printStackTrace();        } catch (IllegalAccessException e) {            e.printStackTrace();        }    }    @Override    public SampleResult runTest(JavaSamplerContext javaSamplerContext) {        SampleResult result = this.newSampleResult();        String paramTopic = javaSamplerContext.getParameter("topic");        String paramKey = javaSamplerContext.getParameter("key");        String paramValue = javaSamplerContext.getParameter("value");        StringBuilder paramStr = new StringBuilder("topic:")                .append(paramTopic).append(",\nkey:")                .append(paramKey).append(", \nvalue:")                .append(paramValue);        sampleResultStart(result, paramStr.toString());        record = new ProducerRecord<>(paramTopic, paramKey, avroValue);        try {            // 1、发送音讯            producer.send(record);            sampleResultSuccess(result, "异步发送胜利");        }catch (Exception ex){            sampleResultFailed(result, "500", ex);        }        return result;    }