Spark Streaming是构建在Spark Core的RDD根底之上的,与此同时Spark Streaming引入了一个新的概念:DStream(Discretized Stream,离散化数据流),示意连续不断的数据流。DStream形象是Spark Streaming的流解决模型,在外部实现上,Spark Streaming会对输出数据依照工夫距离(如1秒)分段,每一段数据转换为Spark中的RDD,这些分段就是Dstream,并且对DStream的操作都最终转变为对相应的RDD的操作。Spark SQL 是 Spark 用于结构化数据(structured data)解决的 Spark 模块。Spark SQL 的前身是Shark,Shark是基于 Hive 所开发的工具,它批改了下图所示的右下角的内存治理、物理打算、执行三个模块,并使之能运行在 Spark 引擎上。

(1)pom依赖:<dependencies>

<dependency>    <groupId>org.apache.spark</groupId>    <artifactId>spark-core_${scala.version}</artifactId>    <version>${spark.version}</version></dependency><dependency>    <groupId>org.apache.spark</groupId>    <artifactId>spark-streaming_${scala.version}</artifactId>    <version>${spark.version}</version></dependency><dependency>    <groupId>org.apache.spark</groupId>    <artifactId>spark-sql_${scala.version}</artifactId>    <version>${spark.version}</version></dependency><dependency>    <groupId>org.scala-lang</groupId>    <artifactId>scala-library</artifactId>    <version>2.11.11</version></dependency><dependency>    <groupId>org.apache.spark</groupId>    <artifactId>spark-streaming-kafka-0-10_2.11</artifactId>    <version>2.3.1</version></dependency><dependency>    <groupId>org.apache.kafka</groupId>    <artifactId>kafka-clients</artifactId>    <version>2.3.1</version></dependency><dependency>    <groupId>com.alibaba</groupId>    <artifactId>fastjson</artifactId>    <version>1.2.66</version></dependency>

</dependencies>(2)定义音讯对象package com.pojo;

import java.io.Serializable;
import java.util.Date;

/**

  • Created by lj on 2022-07-13.
    */

public class WaterSensor implements Serializable {

public String id;public long ts;public int vc;public WaterSensor(){}public WaterSensor(String id,long ts,int vc){    this.id = id;    this.ts = ts;    this.vc = vc;}public int getVc() {    return vc;}public void setVc(int vc) {    this.vc = vc;}public String getId() {    return id;}public void setId(String id) {    this.id = id;}public long getTs() {    return ts;}public void setTs(long ts) {    this.ts = ts;}

}(3)构建数据生产者package com.producers;

import java.io.BufferedWriter;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.Random;

/**

  • Created by lj on 2022-07-12.
    */

public class Socket_Producer {

public static void main(String[] args) throws IOException {    try {        ServerSocket ss = new ServerSocket(9999);        System.out.println("启动 server ....");        Socket s = ss.accept();        BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(s.getOutputStream()));        String response = "java,1,2";        //每 2s 发送一次音讯        int i = 0;        Random r=new Random();   //不传入种子        String[] lang = {"flink","spark","hadoop","hive","hbase","impala","presto","superset","nbi"};        while(true){            response= lang[r.nextInt(lang.length)]+ i + "," + i + "," + i+"\n";            System.out.println(response);            try{                bw.write(response);                bw.flush();                i++;            }catch (Exception ex){                System.out.println(ex.getMessage());            }            Thread.sleep(1000 * 30);        }    } catch (IOException | InterruptedException e) {        e.printStackTrace();    }}

}(4)通过sparkstreaming接入socket数据源,sparksql计算结果打印输出:package com.examples;

import com.pojo.WaterSensor;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.VoidFunction2;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.Time;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;

/**

  • Created by lj on 2022-07-16.
    */

public class SparkSql_Socket1 {

private static String appName = "spark.streaming.demo";private static String master = "local[*]";private static String host = "localhost";private static int port = 9999;public static void main(String[] args) {    //初始化sparkConf    SparkConf sparkConf = new SparkConf().setMaster(master).setAppName(appName);    //取得JavaStreamingContext    JavaStreamingContext ssc = new JavaStreamingContext(sparkConf, Durations.minutes(1));    //从socket源获取数据    JavaReceiverInputDStream<String> lines = ssc.socketTextStream(host, port);    //将 DStream 转换成 DataFrame 并且运行sql查问    lines.foreachRDD(new VoidFunction2<JavaRDD<String>, Time>() {        @Override        public void call(JavaRDD<String> rdd, Time time) {            SparkSession spark = JavaSparkSessionSingleton.getInstance(rdd.context().getConf());            //通过反射将RDD转换为DataFrame            JavaRDD<WaterSensor> rowRDD = rdd.map(new Function<String, WaterSensor>() {                @Override                public WaterSensor call(String line) {                    String[] cols = line.split(",");                    WaterSensor waterSensor = new WaterSensor(cols[0],Long.parseLong(cols[1]),Integer.parseInt(cols[2]));                    return waterSensor;                }            });            Dataset<Row> dataFrame = spark.createDataFrame(rowRDD, WaterSensor.class);            // 创立长期表            dataFrame.createOrReplaceTempView("log");            Dataset<Row> result = spark.sql("select * from log");            System.out.println("========= " + time + "=========");            //输入前20条数据            result.show();        }    });    //开始作业    ssc.start();    try {        ssc.awaitTermination();    } catch (Exception e) {        e.printStackTrace();    } finally {        ssc.close();    }}

}(5)成果演示:

代码中定义的是1分钟的批处理距离,所以每1分钟会触发一次计算: