前言
golang 的sync
包下有种锁,一种是sync.RWMutex
,另一种是sync.Mutex
,本文将解说下sync.RWMutex
是如何实现的?实用于什么场景?如何防止读/写 饥饿问题?就让咱们带着这些问题来看源码是如何实现的
例子
package mainimport ( "fmt" "math/rand" "sync")type Content struct { rw sync.RWMutex val int}func (c *Content) Read() int { c.rw.RLock() defer c.rw.RUnlock() return c.val}func (c *Content) Write(v int) { c.rw.Lock() defer c.rw.Unlock() c.val = v}func main() { const ( readerNum = 100 writerNum = 3 ) content := new(Content) var wg sync.WaitGroup for i := 0; i < writerNum; i++ { wg.Add(1) go func() { defer wg.Done() content.Write(rand.Intn(10)) }() } for i := 0; i < readerNum; i++ { wg.Add(1) go func() { defer wg.Done() fmt.Println(content.Read()) }() }}
互斥性
- 读读不互斥
- 读写互斥
- 写写互斥
源码
type RWMutex struct { w Mutex // held if there are pending writers //当要获取写锁时,须要对w加锁 writerSem uint32 // semaphore for writers to wait for completing readers //writers应用的信号量,用于期待readers实现读操作 readerSem uint32 // semaphore for readers to wait for completing writers //readers应用的信号量,用于期待writers实现写申请 readerCount int32 // number of pending readers //以后正在读的readers数量,也即曾经获取读锁胜利的数量 readerWait int32 // number of departing readers //期待readers实现读操作的数量,从readerCount拷贝过去,用于写锁申请时,示意还剩多少读锁未开释}
获取读锁
func (rw *RWMutex) RLock() { ... if atomic.AddInt32(&rw.readerCount, 1) < 0 { // A writer is pending, wait for it. runtime_SemacquireMutex(&rw.readerSem, false, 0) } ...}
若readerCount
大于0时,阐明曾经有reader获取读锁,那么间接返回胜利,示意获取读锁胜利,若atomic.AddInt32(&rw.readerCount, 1)<0
示意曾经有写锁再排队,此时写锁会将readerCount
置为一个很小的正数(下文源码会解释),那么这个时候有reader来获取读锁时,只能在 readerSem
中排队,这样就不会导致写锁饥饿.
获取写锁
func (rw *RWMutex) Lock() { ... // First, resolve competition with other writers. rw.w.Lock() // Announce to readers there is a pending writer. r := atomic.AddInt32(&rw.readerCount, -rwmutexMaxReaders) + rwmutexMaxReaders //注: rwmutexMaxReaders = 1 << 30 // Wait for active readers. if r != 0 && atomic.AddInt32(&rw.readerWait, r) != 0 { runtime_SemacquireMutex(&rw.writerSem, false, 0) } ...}
writer 获取写锁是,首先w
进行加锁,这样就能够防止其余的writer 也来获取写锁。
atomic.AddInt32(&rw.readerCount, -rwmutexMaxReaders)
将readerCount
置为一个很小的正数,这样就能够阻止reader间接获取读锁,从而在 readerSem
中排队。
曾经阻止了起初的writer和reader,那么须要期待曾经胜利获取读锁的reader 开释读锁,这里能力获取写锁, 这里将readerCount
拷贝到readerWait
,而后本次writer 进入 writerSem
中排队,期待曾经获取读锁的reader开释读锁,并告诉这个writer.
开释读锁
func (rw *RWMutex) RUnlock() { ... if r := atomic.AddInt32(&rw.readerCount, -1); r < 0 { // Outlined slow-path to allow the fast-path to be inlined rw.rUnlockSlow(r) } ...}func (rw *RWMutex) rUnlockSlow(r int32) { if r+1 == 0 || r+1 == -rwmutexMaxReaders { throw("sync: RUnlock of unlocked RWMutex") } // A writer is pending. if atomic.AddInt32(&rw.readerWait, -1) == 0 { // The last reader unblocks the writer. runtime_Semrelease(&rw.writerSem, false, 1) }}
由下面获取读锁可知,每次获取一个读锁,readerCount
加一,所以这里须要减一,如果减一之后小于0,阐明有writer正在获取锁。那么,须要调用rUnlockSlow
进行后续操作。
- 判断
readerWait
是否等于0,也即是否还有reader 还没有开释读锁。 - 若等于0,则示意在writer 获取写锁开始,全副的reader曾经开释读锁,这时就须要告诉唤醒之前那个还阻塞在获取写锁的writer
开释写锁
func (rw *RWMutex) Unlock() { ... // Announce to readers there is no active writer. r := atomic.AddInt32(&rw.readerCount, rwmutexMaxReaders) if r >= rwmutexMaxReaders { throw("sync: Unlock of unlocked RWMutex") } // Unblock blocked readers, if any. for i := 0; i < int(r); i++ { runtime_Semrelease(&rw.readerSem, false, 0) } // Allow other writers to proceed. rw.w.Unlock() ...}
这里次要通过atomic.AddInt32(&rw.readerCount, rwmutexMaxReaders)
复原readerCount
,复原后的值就是以后阻塞在获取读锁的reader数量,这时就须要
runtime_Semrelease(&rw.readerSem, false, 0)
将这些reader 全副唤醒,示意他们获取到读锁。
性能比拟
以下数据来自参考文献[1]中作者benchmark 的数据,这里应用sync.Lock
和sync.RWMutex
来比展现应用读写锁性能劣势,其中writeRadio 示意 reader:writer 的比值,耗时减低绝对sync.Lock
而言。阐明在读多写少的场景中,读写锁能大幅晋升性能。
writeRatio | 3 | 10 | 20 | 50 | 100 | 1000 |
---|---|---|---|---|---|---|
耗时升高 | 24% | 71.3% | 83.7% | 90.9% | 93.5% | 95.7% |
参考文献
- https://segmentfault.com/a/11...