前言
golang 的sync
包下有种锁,一种是sync.RWMutex
,另一种是sync.Mutex
,本文将解说下sync.Mutex
是如何实现的?如何防止读/写 饥饿问题?就让咱们带着这些问题来看源码是如何实现的
概述
// Mutex fairness.//// Mutex can be in 2 modes of operations: normal and starvation.// In normal mode waiters are queued in FIFO order, but a woken up waiter// does not own the mutex and competes with new arriving goroutines over// the ownership. New arriving goroutines have an advantage -- they are// already running on CPU and there can be lots of them, so a woken up// waiter has good chances of losing. In such case it is queued at front// of the wait queue. If a waiter fails to acquire the mutex for more than 1ms,// it switches mutex to the starvation mode.//// In starvation mode ownership of the mutex is directly handed off from// the unlocking goroutine to the waiter at the front of the queue.// New arriving goroutines don't try to acquire the mutex even if it appears// to be unlocked, and don't try to spin. Instead they queue themselves at// the tail of the wait queue.//// If a waiter receives ownership of the mutex and sees that either// (1) it is the last waiter in the queue, or (2) it waited for less than 1 ms,// it switches mutex back to normal operation mode.//// Normal mode has considerably better performance as a goroutine can acquire// a mutex several times in a row even if there are blocked waiters.// Starvation mode is important to prevent pathological cases of tail latency.
以上摘自golang源码中对mutex
的正文,我感觉用来概括解释十分清晰
Mutex
作为并发原语中的锁,波及锁的公平性(即偏心锁和非偏心锁,通常非偏心锁性能更加),go中叫做两种模式:失常
和饥饿
。
失常模式下,未获取到锁的goroutine 会在waiter中依照FIFO 形式在队列中排队。当锁被开释,会唤醒waiter 中的goroutine,它会和新来的goroutine(如果开释锁时,刚好有新的协程来获取锁)进行竞争锁,新来的goroutine有更大的劣势获取到锁,因为他们正在CPU执行。那么刚刚在waiter中唤醒的goroutine 因为没有获取到锁(白跑一趟),那么它就会被放到waiter的队列头.当waiter 中的goroutine 超过1s 没有获取到锁,会将mutex 置为饥饿模式。
饥饿模式下, 在开释锁的过程,新来的goroutine不会参加竞争锁,间接由waiter 中队头的goroutine获取锁,如果队头的goroutine 的等待时间小于1ms,阐明此时曾经没有协程处于饥饿,将切换回失常模式。
源码
const( mutexLocked = 1 << iota // mutex is locked mutexWoken mutexStarving)type Mutex struct { state int32 sema uint32}
state
状态中低三位用于标识锁的状态其余高位用于记录waiter的数量, state 能够示意为:waiterNum|mutexStarving|mutexWoken|mutexLocked
sema
是个FIFO队列,用于goroutine 作为waiter 在这里排队.
获取锁
没有竞争,间接通过CAS获取锁
func (m *Mutex) Lock() { // Fast path: grab unlocked mutex. if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) { if race.Enabled { race.Acquire(unsafe.Pointer(m)) } return } // Slow path (outlined so that the fast path can be inlined) m.lockSlow()}
有竞争,走lockSlow
失常模式
if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) { // Active spinning makes sense. // Try to set mutexWoken flag to inform Unlock // to not wake other blocked goroutines. if !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 && atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) { awoke = true } runtime_doSpin() iter++ old = m.state continue}
失常模式下,这里通过自旋期待锁的开释,同时会将state 置为mutexWoken
,用于锁在开释是是否将锁资源移交给自旋锁的协程竞争锁
if atomic.CompareAndSwapInt32(&m.state, old, new) { if old&(mutexLocked|mutexStarving) == 0 { // 这里是失常模式下,线程唤醒后获取到锁的进口 break // locked the mutex with CAS //线程自旋后,原来持有锁的线程开释锁后,state的mutexLocked 或置于0。而后,本次CAS 胜利,获取到锁 } // If we were already waiting before, queue at the front of the queue. //没有获取到锁,若是之前曾经在waiter中,则放入队首,否则放入队尾 queueLifo := waitStartTime != 0 if waitStartTime == 0 { waitStartTime = runtime_nanotime() } runtime_SemacquireMutex(&m.sema, queueLifo, 1) //每次有锁开释,会唤醒waiter 协程,唤醒点在这里 starving = starving || runtime_nanotime()-waitStartTime > starvationThresholdNs old = m.state ... awoke = true iter = 0}
- 线程自旋后,原来持有锁的线程开释锁后,state的mutexLocked 或置于0。而后,本次CAS 胜利,获取到锁
- 若本人是waiter唤醒后,然而由没有获取到锁,则放入waiter 队首,否则放入队尾
- 若等待时间超过1s ,将mutex 切换为饥饿模式
饥饿模式
new := old...if atomic.CompareAndSwapInt32(&m.state, old, new) { ... starving = starving || runtime_nanotime()-waitStartTime > starvationThresholdNs old = m.state if old&mutexStarving != 0 { ... delta := int32(mutexLocked - 1<<mutexWaiterShift) if !starving || old>>mutexWaiterShift == 1 { // Exit starvation mode. // Critical to do it here and consider wait time. // Starvation mode is so inefficient, that two goroutines // can go lock-step infinitely once they switch mutex // to starvation mode. delta -= mutexStarving } atomic.AddInt32(&m.state, delta) break //这里是锁在饥饿条件下,协程被唤醒后(获取到锁)的进口 } awoke = true iter = 0} else { old = m.state}
- 若协程曾经超过1ms 没有获取到锁,则切换到饥饿模式(
runtime_nanotime()-waitStartTime > starvationThresholdNs
). - 若waiter 队列只剩本协程,那么退出饥饿模式(
old>>mutexWaiterShift == 1
)
开释锁
没有锁竞争,间接CAS 开释锁资源
func (m *Mutex) Unlock() { // Fast path: drop lock bit. new := atomic.AddInt32(&m.state, -mutexLocked) if new != 0 { // Outlined slow path to allow inlining the fast path. // To hide unlockSlow during tracing we skip one extra frame when tracing GoUnblock. m.unlockSlow(new) }}
有竞争,走unlockSlow
失常模式
old := newfor { // If there are no waiters or a goroutine has already // been woken or grabbed the lock, no need to wake anyone. // In starvation mode ownership is directly handed off from unlocking // goroutine to the next waiter. We are not part of this chain, // since we did not observe mutexStarving when we unlocked the mutex above. // So get off the way. if old>>mutexWaiterShift == 0 || old&(mutexLocked|mutexWoken|mutexStarving) != 0 { return } // Grab the right to wake someone. new = (old - 1<<mutexWaiterShift) | mutexWoken if atomic.CompareAndSwapInt32(&m.state, old, new) { runtime_Semrelease(&m.sema, false, 1) return } old = m.state}
从 waiter中唤起一个,与新来的goroutine 一起竞争锁资源
饥饿模式
// Starving mode: handoff mutex ownership to the next waiter, and yield// our time slice so that the next waiter can start to run immediately.// Note: mutexLocked is not set, the waiter will set it after wakeup.// But mutex is still considered locked if mutexStarving is set,// so new coming goroutines won't acquire it.runtime_Semrelease(&m.sema, true, 1)
间接从waiter中取出期待队列的第一个饥饿的协程来获取锁
参考文献
- https://juejin.cn/post/695897...
- https://segmentfault.com/a/11...