基于上一篇(3)Flink CEP SQL宽松近邻代码演示的延展,在上一篇中咱们应用贪心词量 +(至多匹配1行或多行),本篇将演示多种贪心词量的成果:
(1)应用贪心词量 *(匹配0行或多行)

public static void main(String[] args) {    EnvironmentSettings settings = null;    StreamTableEnvironment tEnv = null;    try {        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();        settings = EnvironmentSettings.newInstance()                .useBlinkPlanner()                .inStreamingMode()                .build();        tEnv = StreamTableEnvironment.create(env, settings);        System.out.println("===============CEP_SQL_10=================");        final DateTimeFormatter dateTimeFormatter = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");        DataStream<Ticker> dataStream =                env.fromElements(                        new Ticker(1, "ACME", 22, 1, LocalDateTime.parse("2021-12-10 10:00:00", dateTimeFormatter)),                        new Ticker(3, "ACME", 19, 1, LocalDateTime.parse("2021-12-10 10:00:02", dateTimeFormatter)),                        new Ticker(4, "ACME", 23, 3, LocalDateTime.parse("2021-12-10 10:00:03", dateTimeFormatter)),                        new Ticker(5, "Apple", 25, 2, LocalDateTime.parse("2021-12-10 10:00:04", dateTimeFormatter)),                        new Ticker(6, "Apple", 18, 1, LocalDateTime.parse("2021-12-10 10:00:05", dateTimeFormatter)),                        new Ticker(7, "Apple", 16, 1, LocalDateTime.parse("2021-12-10 10:00:06", dateTimeFormatter)),                        new Ticker(8, "Apple", 14, 2, LocalDateTime.parse("2021-12-10 10:00:07", dateTimeFormatter)),                        new Ticker(9, "Apple", 19, 2, LocalDateTime.parse("2021-12-10 10:00:08", dateTimeFormatter)),                        new Ticker(10, "Apple", 25, 2, LocalDateTime.parse("2021-12-10 10:00:09", dateTimeFormatter)),                        new Ticker(11, "Apple", 11, 1, LocalDateTime.parse("2021-12-10 10:00:11", dateTimeFormatter)),                        new Ticker(12, "Apple", 15, 1, LocalDateTime.parse("2021-12-10 10:00:12", dateTimeFormatter)),                        new Ticker(13, "Apple", 19, 1, LocalDateTime.parse("2021-12-10 10:00:13", dateTimeFormatter)),                        new Ticker(14, "Apple", 25, 1, LocalDateTime.parse("2021-12-10 10:00:14", dateTimeFormatter)),                        new Ticker(15, "Apple", 19, 1, LocalDateTime.parse("2021-12-10 10:00:15", dateTimeFormatter)),                        new Ticker(16, "Apple", 15, 1, LocalDateTime.parse("2021-12-10 10:00:16", dateTimeFormatter)),                        new Ticker(17, "Apple", 19, 1, LocalDateTime.parse("2021-12-10 10:00:17", dateTimeFormatter)),                        new Ticker(18, "Apple", 15, 1, LocalDateTime.parse("2021-12-10 10:00:18", dateTimeFormatter)));                Table table = tEnv.fromDataStream(dataStream, Schema.newBuilder()                .column("id", DataTypes.BIGINT())                .column("symbol", DataTypes.STRING())                .column("price", DataTypes.BIGINT())                .column("tax", DataTypes.BIGINT())                .column("rowtime", DataTypes.TIMESTAMP(3))                .watermark("rowtime", "rowtime - INTERVAL '1' SECOND")                .build());        tEnv.createTemporaryView("CEP_SQL_10", table);                String sql = "SELECT * " +                "FROM CEP_SQL_10 " +                "    MATCH_RECOGNIZE ( " +                "        PARTITION BY symbol " +       //按symbol分区,将雷同卡号的数据分到同一个计算节点上。                "        ORDER BY rowtime " +          //在窗口内,对事件工夫进行排序。                "        MEASURES " +                   //定义如何依据匹配胜利的输出事件结构输入事件                "            e1.id as id,"+                "            AVG(e1.price) as avgPrice,"+                "            e1.rowtime AS start_tstamp, " +                "            e3.rowtime AS end_tstamp " +                "        ONE ROW PER MATCH " +                                      //匹配胜利输入一条                "        AFTER MATCH  skip to next row " +                   //匹配后跳转到下一行                "        PATTERN ( e1 e2* e3) WITHIN INTERVAL '2' MINUTE" +                "        DEFINE " +                                                 //定义各事件的匹配条件                "            e1 AS " +                "                e1.price = 25 , " +                "            e2 AS " +                "                e2.price > 10 AND e2.price <19," +                "            e3 AS " +                "                e3.price = 19 " +                "    ) MR";                        TableResult res = tEnv.executeSql(sql);        res.print();        tEnv.dropTemporaryView("CEP_SQL_10");}

匹配到了三组数据

贪心词量 *(匹配0行或多行)

(2)应用贪心词量 {n}(严格匹配n行)


(3)应用贪心词量 {n,}(n或者更多行(n≥O))