上一篇咱们演示了严格近邻模式的成果,接着上一篇咱们来演示一下宽松近邻:(1)pom依赖:<dependency>

<groupId>org.apache.flink</groupId><artifactId>flink-cep_${scala.binary.version}</artifactId><version>${flink.version}</version>

</dependency>(2)定义一个音讯对象

public static class Ticker {

public long id;public String symbol;public long price;public long tax;public LocalDateTime rowtime;public Ticker() {}public Ticker(long id, String symbol, long price, long item, LocalDateTime rowtime) {    this.id = id;    this.symbol = symbol;    this.price = price;    this.tax = tax;    this.rowtime = rowtime;}

}
(3)结构数据,定义事件组合
public static void main(String[] args) {

EnvironmentSettings settings = null;StreamTableEnvironment tEnv = null;try {    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();    settings = EnvironmentSettings.newInstance()            .useBlinkPlanner()            .inStreamingMode()            .build();    tEnv = StreamTableEnvironment.create(env, settings);    System.out.println("===============CEP_SQL_10=================");    final DateTimeFormatter dateTimeFormatter = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");    DataStream<Ticker> dataStream =            env.fromElements(                    new Ticker(1, "ACME", 22, 1, LocalDateTime.parse("2021-12-10 10:00:00", dateTimeFormatter)),                    new Ticker(3, "ACME", 19, 1, LocalDateTime.parse("2021-12-10 10:00:02", dateTimeFormatter)),                    new Ticker(4, "ACME", 23, 3, LocalDateTime.parse("2021-12-10 10:00:03", dateTimeFormatter)),                    new Ticker(5, "Apple", 25, 2, LocalDateTime.parse("2021-12-10 10:00:04", dateTimeFormatter)),                    new Ticker(6, "Apple", 18, 1, LocalDateTime.parse("2021-12-10 10:00:05", dateTimeFormatter)),                    new Ticker(7, "Apple", 16, 1, LocalDateTime.parse("2021-12-10 10:00:06", dateTimeFormatter)),                    new Ticker(8, "Apple", 14, 2, LocalDateTime.parse("2021-12-10 10:00:07", dateTimeFormatter)),                    new Ticker(9, "Apple", 19, 2, LocalDateTime.parse("2021-12-10 10:00:08", dateTimeFormatter)),                    new Ticker(10, "Apple", 25, 2, LocalDateTime.parse("2021-12-10 10:00:09", dateTimeFormatter)),                    new Ticker(11, "Apple", 11, 1, LocalDateTime.parse("2021-12-10 10:00:11", dateTimeFormatter)),                    new Ticker(12, "Apple", 15, 1, LocalDateTime.parse("2021-12-10 10:00:12", dateTimeFormatter)),                    new Ticker(13, "Apple", 19, 1, LocalDateTime.parse("2021-12-10 10:00:13", dateTimeFormatter)),                    new Ticker(14, "Apple", 25, 1, LocalDateTime.parse("2021-12-10 10:00:14", dateTimeFormatter)),                    new Ticker(15, "Apple", 19, 1, LocalDateTime.parse("2021-12-10 10:00:15", dateTimeFormatter)),                    new Ticker(16, "Apple", 15, 1, LocalDateTime.parse("2021-12-10 10:00:16", dateTimeFormatter)),                    new Ticker(17, "Apple", 19, 1, LocalDateTime.parse("2021-12-10 10:00:17", dateTimeFormatter)),                    new Ticker(18, "Apple", 15, 1, LocalDateTime.parse("2021-12-10 10:00:18", dateTimeFormatter)));        Table table = tEnv.fromDataStream(dataStream, Schema.newBuilder()            .column("id", DataTypes.BIGINT())            .column("symbol", DataTypes.STRING())            .column("price", DataTypes.BIGINT())            .column("tax", DataTypes.BIGINT())            .column("rowtime", DataTypes.TIMESTAMP(3))            .watermark("rowtime", "rowtime - INTERVAL '1' SECOND")            .build());    tEnv.createTemporaryView("CEP_SQL_10", table);        String sql = "SELECT * " +            "FROM CEP_SQL_10 " +            "    MATCH_RECOGNIZE ( " +            "        PARTITION BY symbol " +       //按symbol分区,将雷同卡号的数据分到同一个计算节点上。            "        ORDER BY rowtime " +          //在窗口内,对事件工夫进行排序。            "        MEASURES " +                   //定义如何依据匹配胜利的输出事件结构输入事件            "            e1.id as id,"+            "            AVG(e1.price) as avgPrice,"+            "            e1.rowtime AS start_tstamp, " +            "            e3.rowtime AS end_tstamp " +            "        ONE ROW PER MATCH " +                                      //匹配胜利输入一条            "        AFTER MATCH  skip to next row " +                   //匹配后跳转到下一行            "        PATTERN ( e1 e2+ e3) WITHIN INTERVAL '2' MINUTE" +            "        DEFINE " +                                                 //定义各事件的匹配条件            "            e1 AS " +            "                e1.price = 25 , " +            "            e2 AS " +            "                e2.price > 10 AND e2.price <19," +            "            e3 AS " +            "                e3.price = 19 " +            "    ) MR";            TableResult res = tEnv.executeSql(sql);    res.print();    tEnv.dropTemporaryView("CEP_SQL_10");

}
(4)要害代码解释:

须要借着贪心词量来实现宽松近邻成果。


匹配到两组数据。