• GreatSQL社区原创内容未经受权不得随便应用,转载请分割小编并注明起源。
  • GreatSQL是MySQL的国产分支版本,应用上与MySQL统一。

前言

明天遇到一个很神奇的景象,在数据库中,雷同的执行打算,执行SQL所须要的工夫相差很大,执行快的SQL霎时出后果,执行慢的SQL要几十秒才出后果,一度让我狐疑是数据库抽风了,前面才发现是见识有余,又进入了常识空白区。

场景复现

数据库版本应用的是8.0.23 MySQL Community Server - GPL

因为生产环境数据敏感,禁止随便折腾,我在本人的测试环境,通过如下步骤,结构了一批数据,勉强可能复现出雷同的场景来

  1. 应用sysbench结构一万张表,每张表10行记录即可。
  2. create table test.test_col as select * from information_schema.columns;
  3. create table test.test_tab as select * from information_schema.tables;
  4. create table test.test_tc as select * from information_schema.table_constraints;
  5. 执行10次 insert into test.test_tab select * from test.test_tab;
  6. 创立必要的索引
alter table test_col add key(table_schema, table_name);alter table test_col add key(column_name);alter table test_tab add key(table_schema, table_name);alter table test_tc add key(table_name);

最终我测试表的数据如下

mysql> select count(1) from test_col;+----------+| count(1) |+----------+|   1395616|+----------+1 row in set (3.29 sec)mysql> select count(1) from test_tab;+----------+| count(1) |+----------+|    10338 |+----------+1 row in set (0.12 sec)mysql> select count(1) from test_tc;+----------+| count(1) |+----------+|    10143 |+----------+1 row in set (0.06 sec)

先看执行快的SQL和它的执行打算

mysql> select count(1) from (select t1.TABLE_CATALOG, t2.TABLE_SCHEMA, t2.TABLE_NAME, t1.COLUMN_NAME, t1.DATA_TYPE, t3.CONSTRAINT_TYPE   from test_col t1   inner join test_tab t2 on t1.TABLE_SCHEMA = t2.TABLE_SCHEMA and t1.table_name = t2.table_name  inner join test_tc t3 on t2.TABLE_SCHEMA = t3.TABLE_SCHEMA and t2.TABLE_NAME = t3.TABLE_NAME limit 3 ) t;+----------+| count(1) |+----------+|        3 |+----------+1 row in set (0.00 sec)mysql> explain select count(1) from (select t1.TABLE_CATALOG, t2.TABLE_SCHEMA, t2.TABLE_NAME, t1.COLUMN_NAME, t1.DATA_TYPE, t3.CONSTRAINT_TYPE   from test_col t1   inner join test_tab t2 on t1.TABLE_SCHEMA = t2.TABLE_SCHEMA and t1.table_name = t2.table_name  inner join test_tc t3 on t2.TABLE_SCHEMA = t3.TABLE_SCHEMA and t2.TABLE_NAME = t3.TABLE_NAME limit 3 ) t;+----+-------------+------------+------------+-------+---------------+--------------+---------+-----------------------------------------+-------+----------+--------------------------+| id | select_type | table      | partitions | type  | possible_keys | key          | key_len | ref                                     | rows  | filtered | Extra                    |+----+-------------+------------+------------+-------+---------------+--------------+---------+-----------------------------------------+-------+----------+--------------------------+|  1 | PRIMARY     | <derived2> | NULL       | ALL   | NULL          | NULL         | NULL    | NULL                                    |     3 |   100.00 | NULL                     ||  2 | DERIVED     | t2         | NULL       | index | TABLE_SCHEMA  | TABLE_SCHEMA | 390     | NULL                                    | 10240 |   100.00 | Using where; Using index ||  2 | DERIVED     | t3         | NULL       | ref   | TABLE_NAME    | TABLE_NAME   | 195     | test.t2.TABLE_NAME                      |     1 |    10.00 | Using where              ||  2 | DERIVED     | t1         | NULL       | ref   | TABLE_SCHEMA  | TABLE_SCHEMA | 390     | test.t2.TABLE_SCHEMA,test.t2.TABLE_NAME |    61 |   100.00 | NULL                     |+----+-------------+------------+------------+-------+---------------+--------------+---------+-----------------------------------------+-------+----------+--------------------------+4 rows in set, 1 warning (0.00 sec)

再看执行慢的SQL和它的执行打算

mysql> select count(1) from (select t1.TABLE_CATALOG, t2.TABLE_SCHEMA, t2.TABLE_NAME, t1.COLUMN_NAME, t1.DATA_TYPE, t3.CONSTRAINT_TYPE   from test_col t1   inner join test_tab t2 on t1.TABLE_SCHEMA = t2.TABLE_SCHEMA and t1.table_name = t2.table_name  inner join test_tc t3 on t2.TABLE_SCHEMA = t3.TABLE_SCHEMA and t2.TABLE_NAME = t3.TABLE_NAME ) t;+----------+| count(1) |+----------+|   1333088|+----------+1 row in set (2.45 sec)mysql> explain select count(1) from (select t1.TABLE_CATALOG, t2.TABLE_SCHEMA, t2.TABLE_NAME, t1.COLUMN_NAME, t1.DATA_TYPE, t3.CONSTRAINT_TYPE   from test_col t1   inner join test_tab t2 on t1.TABLE_SCHEMA = t2.TABLE_SCHEMA and t1.table_name = t2.table_name  inner join test_tc t3 on t2.TABLE_SCHEMA = t3.TABLE_SCHEMA and t2.TABLE_NAME = t3.TABLE_NAME ) t;+----+-------------+-------+------------+-------+---------------+--------------+---------+-----------------------------------------+-------+----------+--------------------------+| id | select_type | table | partitions | type  | possible_keys | key          | key_len | ref                                     | rows  | filtered | Extra                    |+----+-------------+-------+------------+-------+---------------+--------------+---------+-----------------------------------------+-------+----------+--------------------------+|  1 | SIMPLE      | t2    | NULL       | index | TABLE_SCHEMA  | TABLE_SCHEMA | 390     | NULL                                    | 10240 |   100.00 | Using where; Using index ||  1 | SIMPLE      | t3    | NULL       | ref   | TABLE_NAME    | TABLE_NAME   | 195     | test.t2.TABLE_NAME                      |     1 |    10.00 | Using where              ||  1 | SIMPLE      | t1    | NULL       | ref   | TABLE_SCHEMA  | TABLE_SCHEMA | 390     | test.t2.TABLE_SCHEMA,test.t2.TABLE_NAME |    61 |   100.00 | Using index              |+----+-------------+-------+------------+-------+---------------+--------------+---------+-----------------------------------------+-------+----------+--------------------------+3 rows in set, 1 warning (0.00 sec)

比照两个SQL执行打算,抉择索引雷同,表关联程序雷同,快的执行0.00秒,慢的执行2.45秒,生产环境数据量更多,差别更大。两条SQL差异是执行快的SQL子查问中多了limit 3。

从上述执行打算,咱们能够看出,t2表为驱动表,先与t3做关联,失去后果后再与t1做关联,最初将后果集返回给客户端。

咱们都晓得,MySQL从server层返回数据给client,是一行一行返回的。也就是下层后果集与t1表每关联一行,有后果后,在没有排序的状况下,就是间接返回,并不会等所有行关联完后一起返回。

那么整个关联门路,是怎么样的呢,简化流程后应该是上面两种状况的一个

  1. 从t2取出所有数据,与t3表关联失去所有后果集后;再从t1中取一行关联,每失去一行后果,返回一次数据
  2. 从t2取一行数据,与t3表关联失去一行后果后,再从t1中取一行关联,每失去一行后果,返回一次数据

新的技巧

因为下面两个SQL执行打算、预估老本都雷同,无奈看出具体执行过程中差别点在什么中央导致执行性能差这么多.

在MySQL 8.0.18及之后,有一个新性能explain analyze,能够定量分析SQL执行过程中的耗时及理论数据拜访条数,拿到咱们的场景具体应用一下

mysql> explain analyze select count(1) from (select t1.TABLE_CATALOG, t2.TABLE_SCHEMA, t2.TABLE_NAME, t1.COLUMN_NAME, t1.DATA_TYPE, t3.CONSTRAINT_TYPE   from test_col t1   inner join test_tab t2 on t1.TABLE_SCHEMA = t2.TABLE_SCHEMA and t1.table_name = t2.table_name  inner join test_tc t3 on t2.TABLE_SCHEMA = t3.TABLE_SCHEMA and t2.TABLE_NAME = t3.TABLE_NAME limit 3 ) t \G*************************** 1. row ***************************EXPLAIN: -> Aggregate: count(1)  (actual time=0.348..0.349 rows=1 loops=1)    -> Table scan on t  (cost=2.84 rows=3) (actual time=0.003..0.004 rows=3 loops=1)        -> Materialize  (cost=75298.09 rows=3) (actual time=0.339..0.340 rows=3 loops=1)            -> Limit: 3 row(s)  (cost=75298.09 rows=3) (actual time=0.179..0.205 rows=3 loops=1)                -> Nested loop inner join  (cost=75298.09 rows=132366) (actual time=0.177..0.203 rows=3 loops=1)                    -> Nested loop inner join  (cost=4648.25 rows=1024) (actual time=0.130..0.130 rows=1 loops=1)                        -> Filter: ((t2.`TABLE_NAME` is not null) and (t2.TABLE_SCHEMA is not null))  (cost=1064.25 rows=10240) (actual time=0.065..0.065 rows=1 loops=1)                            -> Index scan on t2 using TABLE_SCHEMA  (cost=1064.25 rows=10240) (actual time=0.053..0.053 rows=1 loops=1)                        -> Filter: (t3.TABLE_SCHEMA = t2.TABLE_SCHEMA)  (cost=0.25 rows=0) (actual time=0.062..0.062 rows=1 loops=1)                            -> Index lookup on t3 using TABLE_NAME (TABLE_NAME=t2.`TABLE_NAME`)  (cost=0.25 rows=1) (actual time=0.059..0.059 rows=1 loops=1)                    -> Index lookup on t1 using TABLE_SCHEMA (TABLE_SCHEMA=t2.TABLE_SCHEMA, TABLE_NAME=t2.`TABLE_NAME`)  (cost=56.08 rows=129) (actual time=0.044..0.070 rows=3 loops=1)1 row in set (0.00 sec)mysql> explain analyze select count(1) from (select t1.TABLE_CATALOG, t2.TABLE_SCHEMA, t2.TABLE_NAME, t1.COLUMN_NAME, t1.DATA_TYPE, t3.CONSTRAINT_TYPE   from test_col t1   inner join test_tab t2 on t1.TABLE_SCHEMA = t2.TABLE_SCHEMA and t1.table_name = t2.table_name  inner join test_tc t3 on t2.TABLE_SCHEMA = t3.TABLE_SCHEMA and t2.TABLE_NAME = t3.TABLE_NAME ) t \G*************************** 1. row ***************************EXPLAIN: -> Aggregate: count(1)  (actual time=2130.310..2130.311 rows=1 loops=1)    -> Nested loop inner join  (cost=19704.44 rows=132366) (actual time=0.114..2006.259 rows=1333088 loops=1)        -> Nested loop inner join  (cost=4648.25 rows=1024) (actual time=0.094..108.093 rows=10143 loops=1)            -> Filter: ((t2.`TABLE_NAME` is not null) and (t2.TABLE_SCHEMA is not null))  (cost=1064.25 rows=10240) (actual time=0.051..17.021 rows=10338 loops=1)                -> Index scan on t2 using TABLE_SCHEMA  (cost=1064.25 rows=10240) (actual time=0.049..12.845 rows=10338 loops=1)            -> Filter: (t3.TABLE_SCHEMA = t2.TABLE_SCHEMA)  (cost=0.25 rows=0) (actual time=0.007..0.008 rows=1 loops=10338)                -> Index lookup on t3 using TABLE_NAME (TABLE_NAME=t2.`TABLE_NAME`)  (cost=0.25 rows=1) (actual time=0.007..0.008 rows=1 loops=10338)        -> Index lookup on t1 using TABLE_SCHEMA (TABLE_SCHEMA=t2.TABLE_SCHEMA, TABLE_NAME=t2.`TABLE_NAME`)  (cost=1.79 rows=129) (actual time=0.010..0.172 rows=131 loops=10143)1 row in set (2.13 sec)mysql>

从下面的剖析后果来看,在驱动表t2执行Index scan on t2 using TABLE_SCHEMA这一步的时候,就存在很大的差别了,执行快的SQL在这一步只扫描了一行记录,耗时0.053毫秒,而执行快的SQL在这一步扫描数量基本上和执行打算预计的统一,扫描了10338行记录,耗时12.845毫秒;驱动表扫描记录越多,那么和后续表关联的nested loop join次数也越多,导致两条SQL执行工夫差别微小。

加大limit的返回限度为5000,驱动表t2扫描的行数减少至99行,执行工夫减少至0.201毫秒

mysql> explain analyze select count(1) from (select t1.TABLE_CATALOG, t2.TABLE_SCHEMA, t2.TABLE_NAME, t1.COLUMN_NAME, t1.DATA_TYPE, t3.CONSTRAINT_TYPE   from test_col t1   inner join test_tab t2 on t1.TABLE_SCHEMA = t2.TABLE_SCHEMA and t1.table_name = t2.table_name  inner join test_tc t3 on t2.TABLE_SCHEMA = t3.TABLE_SCHEMA and t2.TABLE_NAME = t3.TABLE_NAME limit 5000) t \G*************************** 1. row ***************************EXPLAIN: -> Aggregate: count(1)  (actual time=33.395..33.396 rows=1 loops=1)    -> Table scan on t  (cost=565.00 rows=5000) (actual time=0.005..0.765 rows=5000 loops=1)        -> Materialize  (cost=75298.09 rows=5000) (actual time=31.863..33.046 rows=5000 loops=1)            -> Limit: 5000 row(s)  (cost=75298.09 rows=5000) (actual time=0.126..25.326 rows=5000 loops=1)                -> Nested loop inner join  (cost=75298.09 rows=132366) (actual time=0.124..24.757 rows=5000 loops=1)                    -> Nested loop inner join  (cost=4648.25 rows=1024) (actual time=0.095..0.834 rows=20 loops=1)                        -> Filter: ((t2.`TABLE_NAME` is not null) and (t2.TABLE_SCHEMA is not null))  (cost=1064.25 rows=10240) (actual time=0.046..0.201 rows=99 loops=1)                            -> Index scan on t2 using TABLE_SCHEMA  (cost=1064.25 rows=10240) (actual time=0.044..0.157 rows=99 loops=1)                        -> Filter: (t3.TABLE_SCHEMA = t2.TABLE_SCHEMA)  (cost=0.25 rows=0) (actual time=0.005..0.006 rows=0 loops=99)                            -> Index lookup on t3 using TABLE_NAME (TABLE_NAME=t2.`TABLE_NAME`)  (cost=0.25 rows=1) (actual time=0.005..0.006 rows=0 loops=99)                    -> Index lookup on t1 using TABLE_SCHEMA (TABLE_SCHEMA=t2.TABLE_SCHEMA, TABLE_NAME=t2.`TABLE_NAME`)  (cost=56.08 rows=129) (actual time=0.011..1.171 rows=250 loops=20)1 row in set (0.04 sec)mysql>

从下面的analyze后果,也能够看进去,在测试应用的SQL构造中,关联程序是办法2,也就是从t2取一行数据,与t3表关联失去一行后果后,再从t1中取一行关联,每失去一行后果,返回一次数据

从官网文档中介绍,explain analyzeexplain format=tree的补充,两者都是8.0呈现的新性能,这里简略介绍一下我集体了解的查看这种执行打算的程序,如果有不正确的中央,还请斧正:最先查看第一个缩进最多的行,没有雷同缩进时,再向上一个缩进查看,再查看雷同缩进的行(如果它有子缩进行,也是先查看缩进最多的行),以如下SQL为例,它的执行打算查看程序为10->9->12->11->8->13->7->6->5->4->3

  1. 第一个缩进最多的行是第10行,执行打算判断以索引扫描的形式从t2表读取10240条记录,理论从t2表读取了99条记录,在读取这99条记录的操作过程中,读取到第1条记录耗时0.044毫秒,读取到第99条耗时0.157毫秒,因为它是第一个读取的表,也是查问的驱动表,只会读取一次数据
  2. 查看第9行,数据从存储引擎获取后,须要在server层过滤,打算是过滤10240条记录,实际上过滤了99条记录,过滤这99条记录的过程中,第1条记录执行实现耗时是0.046毫秒,第99条记录执行实现耗时是0.201毫秒,驱动表过滤操作也只进行一次
  3. 第11行与第9行缩进雷同,然而因为它有子缩进第12行,所以先执行第12行,以一般索引等值查找的形式扫描t3表,这里执行打算每个关联会返回一条记录,然而理论数据返回0条,是因为这个值是平均值,即t2表的99行记录在t3表中查问记录数除以99,取整后失去的值。
  4. 第12行,对从存储引擎层返回的数据,做进一步过滤,这里也循环99次
  5. 第8行,t2 表与t3表的关联,关联后返回记录20条,实现关联耗时为0.834毫秒
  6. 第13行,以一般索引等值查问,从t1表中获取数据,一共要实现20次循环查问,每次循环获取第一条记录的均匀工夫是0.011毫秒,每次循环获取最初一条记录的工夫是1.171毫秒,每次循环均匀获取250条记录。
  7. 第7行,与t1关联查问的办法和后果,一共返回5000条记录,返回第1条记录耗时0.124毫秒,返回第5000条记录耗时24.757毫秒
  8. 第6行,limit判断,耗时25.326毫秒
  9. 第5行,物化这5000行记录,物化实现耗时33.046毫秒
  10. 第4行,扫描物化表数据5000条记录,扫描耗时0.765毫秒
  11. 第3行,数据做聚合,返回count数量,耗时33.396毫秒,也是整个SQL执行的总耗时

explain analyze 将执行过程中的索引、连贯形式、过滤等信息嵌入了每个执行步骤,首次接触时,能够应用explain后果进行比照查看,以更容易接受和了解执行过程

总结

雷同的SQL执行打算,却有不同的数据获取过程,这个在以前的版本中,是很难剖析到的,explain\optimizer_trace\profile都不行,当初通过explain analyze可能轻易实现,通过这个工具,也加深了对多表join的一个执行过程的了解,是一个十分实用的工具。

须要留神点:

  1. explain analyze过程中会理论执行具体SQL,但并不会SQL的执行后果,返回的后果集是具体执行步骤
  2. 目前只反对select语句,对于insert\ update \delete未反对,这点和explain有差异

参考链接

https://dev.mysql.com/doc/ref...

Enjoy GreatSQL :)

文章举荐:

乏味的SQL DIGEST

ulimits不失效导致数据库启动失败和相干设置阐明
MGR及GreatSQL资源汇总

GreatSQL MGR FAQ

在Linux下源码编译装置GreatSQL/MySQL

## 对于 GreatSQL

GreatSQL是由万里数据库保护的MySQL分支,专一于晋升MGR可靠性及性能,反对InnoDB并行查问个性,是实用于金融级利用的MySQL分支版本。

Gitee:
https://gitee.com/GreatSQL/GreatSQL

GitHub:
https://github.com/GreatSQL/GreatSQL

Bilibili:
https://space.bilibili.com/1363850082/favlist

微信(左)&QQ群(右):

微信:扫码增加GreatSQL社区助手微信好友,发送验证信息“加群”退出GreatSQL/MGR交换微信群。

QQ:间接扫码退出GreatSQL/MGR交换QQ群。