Dive Into MindSpore -- TFRecordDataset For Dataset LoadMindSpore易点通·精讲系列--数据集加载之TFRecordDataset本文开发环境Ubuntu 20.04Python 3.8MindSpore 1.7.0本文内容摘要背景介绍先看文档生成TFRecord数据加载本文总结本文参考1. 背景介绍TFRecord格局是TensorFlow官网设计的一种数据格式。TFRecord 格局是一种用于存储二进制记录序列的简略格局,该格局可能更好的利用内存,外部蕴含多个tf.train.Example,在一个Examples音讯体中蕴含一系列的tf.train.feature属性,而每一个feature是一个key-value的键值对,其中key是string类型,value的取值有三种:bytes_list:能够存储string和byte两种数据类型float_list:能够存储float(float32)和double(float64)两种数据类型int64_list:能够存储bool, enum, int32, uint32, int64, uint64数据类型下面简略介绍了TFRecord的常识,上面咱们就要进入正题,来谈谈MindSpore中对TFRecord格局的反对。2. 先看文档老传统,先来看看官网对API的形容。

上面对主要参数做简略介绍:dataset_files -- 数据集文件门路。schema -- 读取模式策略,艰深来说就是要读取的tfrecord文件内的数据内容格局。能够通过json或者Schema传入。默认为None不指定。columns_list -- 指定读取的具体数据列。默认全副读取。num_samples -- 指定读取进去的样本数量。shuffle -- 是否对数据进行打乱,可参考之前的文章解读。3. 生成TFRecord本文应用的是THUCNews数据集,如果须要将该数据集用于商业用途,请分割数据集作者。数据集启智社区下载地址因为下文须要用到TFRecord数据集来做加载,本节先来生成TFRecord数据集。对TensorFlow不理解的读者能够间接照搬代码即可。生成TFRecord代码如下:import codecs
import os
import re
import six
import tensorflow as tf

from collections import Counter

def _int64_feature(values):

"""Returns a TF-Feature of int64s.Args:    values: A scalar or list of values.Returns:    A TF-Feature."""if not isinstance(values, (tuple, list)):    values = [values]return tf.train.Feature(int64_list=tf.train.Int64List(value=values))

def _float32_feature(values):

"""Returns a TF-Feature of float32s.Args:    values: A scalar or list of values.Returns:    A TF-Feature. """if not isinstance(values, (tuple, list)):    values = [values]return tf.train.Feature(float_list=tf.train.FloatList(value=values))

def _bytes_feature(values):

"""Returns a TF-Feature of bytes.Args:    values: A scalar or list of values.Returns:    A TF-Feature"""if not isinstance(values, (tuple, list)):    values = [values]return tf.train.Feature(bytes_list=tf.train.BytesList(value=values))

def convert_to_feature(values):

"""Convert to TF-Feature based on the type of element in values.Args:    values: A scalar or list of values.Returns:    A TF-Feature."""if not isinstance(values, (tuple, list)):    values = [values]if isinstance(values[0], int):    return _int64_feature(values)elif isinstance(values[0], float):    return _float32_feature(values)elif isinstance(values[0], bytes):    return _bytes_feature(values)else:    raise ValueError("feature type {0} is not supported now !".format(type(values[0])))

def dict_to_example(dictionary):

"""Converts a dictionary of string->int to a tf.Example."""features = {}for k, v in six.iteritems(dictionary):    features[k] = convert_to_feature(values=v)return tf.train.Example(features=tf.train.Features(feature=features))

def get_txt_files(data_dir):

cls_txt_dict = {}txt_file_list = []# get files list and class files list.sub_data_name_list = next(os.walk(data_dir))[1]sub_data_name_list = sorted(sub_data_name_list)for sub_data_name in sub_data_name_list:    sub_data_dir = os.path.join(data_dir, sub_data_name)    data_name_list = next(os.walk(sub_data_dir))[2]    data_file_list = [os.path.join(sub_data_dir, data_name) for data_name in data_name_list]    cls_txt_dict[sub_data_name] = data_file_list    txt_file_list.extend(data_file_list)    num_data_files = len(data_file_list)    print("{}: {}".format(sub_data_name, num_data_files), flush=True)num_txt_files = len(txt_file_list)print("total: {}".format(num_txt_files), flush=True)return cls_txt_dict, txt_file_list

def get_txt_data(txt_file):

with codecs.open(txt_file, "r", "UTF8") as fp:    txt_content = fp.read()txt_data = re.sub("\s+", " ", txt_content)return txt_data

def build_vocab(txt_file_list, vocab_size=7000):

counter = Counter()for txt_file in txt_file_list:    txt_data = get_txt_data(txt_file)    counter.update(txt_data)num_vocab = len(counter)if num_vocab < vocab_size - 1:    real_vocab_size = num_vocab + 2else:    real_vocab_size = vocab_size# pad_id is 0, unk_id is 1vocab_dict = {word_freq[0]: ix + 1 for ix, word_freq in enumerate(counter.most_common(real_vocab_size - 2))}print("real vocab size: {}".format(real_vocab_size), flush=True)print("vocab dict:\n{}".format(vocab_dict), flush=True)return vocab_dict

def make_tfrecords(

    data_dir, tfrecord_dir, vocab_size=7000, min_seq_length=10, max_seq_length=800,    num_train=8, num_test=2, start_fid=0):# get txt filescls_txt_dict, txt_file_list = get_txt_files(data_dir=data_dir)# map word to idvocab_dict = build_vocab(txt_file_list=txt_file_list, vocab_size=vocab_size)# map class to idclass_dict = {class_name: ix for ix, class_name in enumerate(cls_txt_dict.keys())}train_writers = []for fid in range(start_fid, num_train+start_fid):    tfrecord_file = os.path.join(tfrecord_dir, "train_{:04d}.tfrecord".format(fid))    writer = tf.io.TFRecordWriter(tfrecord_file)    train_writers.append(writer)test_writers = []for fid in range(start_fid, num_test+start_fid):    tfrecord_file = os.path.join(tfrecord_dir, "test_{:04d}.tfrecord".format(fid))    writer = tf.io.TFRecordWriter(tfrecord_file)    test_writers.append(writer)pad_id = 0unk_id = 1num_samples = 0num_train_samples = 0num_test_samples = 0for class_name, class_file_list in cls_txt_dict.items():    class_id = class_dict[class_name]    num_class_pass = 0    for txt_file in class_file_list:        txt_data = get_txt_data(txt_file=txt_file)        txt_len = len(txt_data)        if txt_len < min_seq_length:            num_class_pass += 1            continue        if txt_len > max_seq_length:            txt_data = txt_data[:max_seq_length]            txt_len = max_seq_length        word_ids = []        for word in txt_data:            word_id = vocab_dict.get(word, unk_id)            word_ids.append(word_id)        for _ in range(max_seq_length - txt_len):            word_ids.append(pad_id)        example = dict_to_example({"input": word_ids, "class": class_id})        num_samples += 1        if num_samples % 10 == 0:            num_test_samples += 1            writer_id = num_test_samples % num_test            test_writers[writer_id].write(example.SerializeToString())        else:            num_train_samples += 1            writer_id = num_train_samples % num_train            train_writers[writer_id].write(example.SerializeToString())    print("{} pass: {}".format(class_name, num_class_pass), flush=True)for writer in train_writers:    writer.close()for writer in test_writers:    writer.close()print("num samples: {}".format(num_samples), flush=True)print("num train samples: {}".format(num_train_samples), flush=True)print("num test samples: {}".format(num_test_samples), flush=True)

def main():

data_dir = "{your_data_dir}"tfrecord_dir = "{your_tfrecord_dir}"make_tfrecords(data_dir=data_dir, tfrecord_dir=tfrecord_dir)

if name == "__main__":

main()

复制将以上代码保留到文件make_tfrecord.py,运行命令:留神:须要替换data_dir和tfrecord_dir为集体目录。python3 make_tfrecord.py
复制应用tree命令查看生成的TFRecord数据目录,输入内容如下:.
├── test_0000.tfrecord
├── test_0001.tfrecord
├── train_0000.tfrecord
├── train_0001.tfrecord
├── train_0002.tfrecord
├── train_0003.tfrecord
├── train_0004.tfrecord
├── train_0005.tfrecord
├── train_0006.tfrecord
└── train_0007.tfrecord

0 directories, 10 files
复制4. 数据加载有了3中的TFRecord数据集,上面来介绍如何在MindSpore中应用该数据集。4.1 schema应用4.1.1 不指定schema首先来看看对于参数schema不指定,即采纳默认值的状况下,是否正确读取数据。代码如下:import os

from mindspore.common import dtype as mstype
from mindspore.dataset import Schema
from mindspore.dataset import TFRecordDataset

def get_tfrecord_files(tfrecord_dir, file_suffix="tfrecord", is_train=True):

if not os.path.exists(tfrecord_dir):    raise ValueError("tfrecord directory: {} not exists!".format(tfrecord_dir))if is_train:    file_prefix = "train"else:    file_prefix = "test"data_sources = []for parent, _, filenames in os.walk(tfrecord_dir):    for filename in filenames:        if not filename.startswith(file_prefix):            continue        tmp_path = os.path.join(parent, filename)        if tmp_path.endswith(file_suffix):            data_sources.append(tmp_path)return data_sources

def load_tfrecord(tfrecord_dir, tfrecord_json=None):

tfrecord_files = get_tfrecord_files(tfrecord_dir)# print("tfrecord files:\n{}".format("\n".join(tfrecord_files)), flush=True)dataset = TFRecordDataset(dataset_files=tfrecord_files, shuffle=False)data_iter = dataset.create_dict_iterator()for item in data_iter:    print(item, flush=True)    break

def main():

tfrecord_dir = "{your_tfrecord_dir}"tfrecord_json = "{your_tfrecord_json_file}"load_tfrecord(tfrecord_dir=tfrecord_dir, tfrecord_json=None)

if name == "__main__":

main()

复制代码解读:get_tfrecord_files -- 获取指定的TFRecord文件列表load_tfrecord -- 数据集加载将上述代码保留到文件load_tfrecord_dataset.py,运行如下命令:python3 load_tfrecord_dataset.py
复制输入内容如下:能够看出能正确解析出之前保留在TFRecord内的数据,数据类型和数据维度解析正确。{'class': Tensor(shape=[1], dtype=Int64, value= [0]), 'input': Tensor(shape=[800], dtype=Int64, value= [1719, 636, 1063, 18,
......
135, 979, 1, 35, 166, 181, 90, 143])}
复制4.1.2 应用Schema对象上面介绍,如何应用mindspore.dataset.Schema来指定读取模型策略。批改load_tfrecord代码如下:def load_tfrecord(tfrecord_dir, tfrecord_json=None):

tfrecord_files = get_tfrecord_files(tfrecord_dir)# print("tfrecord files:\n{}".format("\n".join(tfrecord_files)), flush=True)data_schema = Schema()data_schema.add_column(name="input", de_type=mstype.int64, shape=[800])data_schema.add_column(name="class", de_type=mstype.int64, shape=[1])dataset = TFRecordDataset(dataset_files=tfrecord_files, schema=data_schema, shuffle=False)data_iter = dataset.create_dict_iterator()for item in data_iter:    print(item, flush=True)    break

复制代码解读:这里应用了Schema对象,并且指定了列名,列的数据类型和数据维度。保留并再次运行文件load_tfrecord_dataset.py,输入内容如下:能够看出能正确解析出之前保留在TFRecord内的数据,数据类型和数据维度解析正确。{'input': Tensor(shape=[800], dtype=Int64, value= [1719, 636, 1063, 18, 742, 330, 385, 999, 837, 56, 529, 1000,
.....
135, 979, 1, 35, 166, 181, 90, 143]), 'class': Tensor(shape=[1], dtype=Int64, value= [0])}
复制4.1.3 应用JSON文件上面介绍,如何应用JSON文件来指定读取模型策略。新建tfrecord_sample.json文件,在文件内写入如下内容:numRows -- 数据列数columns -- 顺次为每列的列名、数据类型、数据维数、数据维度。{
"datasetType": "TF",
"numRows": 2,
"columns": {

"input": {  "type": "int64",  "rank": 1,  "shape": [800]},"class" : {  "type": "int64",  "rank": 1,  "shape": [1]}

}
}
复制有了相应的JSON文件,上面来介绍如何应用该文件进行数据读取。批改load_tfrecord代码如下:def load_tfrecord(tfrecord_dir, tfrecord_json=None):

tfrecord_files = get_tfrecord_files(tfrecord_dir)# print("tfrecord files:\n{}".format("\n".join(tfrecord_files)), flush=True)dataset = TFRecordDataset(dataset_files=tfrecord_files, schema=tfrecord_json, shuffle=False)data_iter = dataset.create_dict_iterator()for item in data_iter:    print(item, flush=True)    break

复制同时批改main局部代码如下:load_tfrecord(tfrecord_dir=tfrecord_dir, tfrecord_json=tfrecord_json)
复制代码解读这里间接将schema参数指定为JSON的文件门路保留并再次运行文件load_tfrecord_dataset.py,输入内容如下:{'class': Tensor(shape=[1], dtype=Int64, value= [0]), 'input': Tensor(shape=[800], dtype=Int64, value= [1719, 636, 1063, 18, ......
135, 979, 1, 35, 166, 181, 90, 143])}
复制4.2 columns_list应用在某些场景下,咱们可能只须要某(几)列的数据,而非全副数据,这时候就能够通过制订columns_list来进行数据加载。上面咱们只读取class列,来简略看看如何操作。在4.1.2根底上,批改load_tfrecord代码如下:def load_tfrecord(tfrecord_dir, tfrecord_json=None):

tfrecord_files = get_tfrecord_files(tfrecord_dir)# print("tfrecord files:\n{}".format("\n".join(tfrecord_files)), flush=True)data_schema = Schema()data_schema.add_column(name="input", de_type=mstype.int64, shape=[800])data_schema.add_column(name="class", de_type=mstype.int64, shape=[1])dataset = TFRecordDataset(dataset_files=tfrecord_files, schema=data_schema, columns_list=["class"], shuffle=False)data_iter = dataset.create_dict_iterator()for item in data_iter:    print(item, flush=True)    break

复制保留并再次运行文件load_tfrecord_dataset.py,输入内容如下:能够看到只读取了咱们指定的列,且数据加载正确。{'class': Tensor(shape=[1], dtype=Int64, value= [0])}
复制5. 本文总结本文介绍了在MindSpore中如何加载TFRecord数据集,并重点介绍了TFRecordDataset中的schema和columns_list参数应用。6. 本文参考THUCTC: 一个高效的中文文本分类工具包THUCNews数据集TFRecordDataset API本文为原创文章,版权归作者所有,未经受权不得转载!