Numpy 是什么就不太过多介绍了,懂的人都懂!

文章很长,高下要忍一下,如果忍不了,那就珍藏吧,总会用到的

萝卜哥也贴心的做成了PDF,在文末获取!

[TOC]

有多个条件时替换 Numpy 数组中的元素

将所有大于 30 的元素替换为 0

import numpy as npthe_array = np.array([49, 7, 44, 27, 13, 35, 71])an_array = np.where(the_array > 30, 0, the_array)print(an_array)

Output:

[ 0  7  0 27 13  0  0]

将大于 30 小于 50 的所有元素替换为 0

import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.where((the_array > 30) & (the_array < 50), 0, the_array)print(an_array)

Output:

[ 0  7  0 27 13  0 71]

给所有大于 40 的元素加 5

import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.where(the_array > 40, the_array + 5, the_array)print(an_array)

Output:

[54  7 49 27 13 35 76]

用 Nan 替换数组中大于 25 的所有元素

import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.where(the_array > 25, np.NaN, the_array)print(an_array)

Output:

[nan  7. nan nan 13. nan nan]

将数组中大于 25 的所有元素替换为 1,否则为 0

import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.asarray([0 if val < 25 else 1 for val in the_array])print(an_array)

Output:

[1 0 1 1 0 1 1]

在 Python 中找到 Numpy 数组的维度

import numpy as nparr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])print(arr.ndim)arr = np.array([[1, 1, 1, 0], [0, 5, 0, 1], [2, 1, 3, 10]])print(arr.ndim)arr = np.array([[[1, 1, 1, 0], [0, 5, 0, 1], [2, 1, 3, 10]]])print(arr.ndim)

Output:

123

两个条件过滤 NumPy 数组

Example 1

import numpy as np the_array = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) filter_arr = np.logical_and(np.greater(the_array, 3), np.less(the_array, 8))print(the_array[filter_arr])

Output:

[4 5 6 7]

Example 2

import numpy as np the_array = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) filter_arr = np.logical_or(the_array < 3, the_array == 4)print(the_array[filter_arr])

Output:

[1 2 4]

Example 3

import numpy as np the_array = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) filter_arr = np.logical_not(the_array > 1, the_array < 5)print(the_array[filter_arr])

Output:

[1]

Example 4

import numpy as np the_array = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) filter_arr = np.logical_or(the_array == 8, the_array < 5)print(the_array[filter_arr])

Output:

[1 2 3 4 8]

Example 5

import numpy as np the_array = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) filter_arr = np.logical_and(the_array == 8, the_array < 5)print(the_array[filter_arr])

Output:

[]

对最初一列求和

第一列总和

import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(4, 3)print(newarr) column_sums = newarr[:, 0].sum()print(column_sums)

Output:

[[ 1  2  3] [ 4  5  6] [ 7  8  9] [10 11 12]]22

第二列总和

import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(4, 3)print(newarr) column_sums = newarr[:, 1].sum()print(column_sums)

Output:

[[ 1  2  3] [ 4  5  6] [ 7  8  9] [10 11 12]]26

第一列和第二列的总和

import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(4, 3)print(newarr) column_sums = newarr[:, 0:2].sum()print(column_sums)

Output:

[[ 1  2  3] [ 4  5  6] [ 7  8  9] [10 11 12]]48

最初一列的总和

import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(4, 3)print(newarr) column_sums = newarr[:, -1].sum()print(column_sums)

Output:

[[ 1  2  3] [ 4  5  6] [ 7  8  9] [10 11 12]]30

满足条件,则替换 Numpy 元素

将所有大于 30 的元素替换为 0

import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.where(the_array > 30, 0, the_array)print(an_array)

Output:

[ 0  7  0 27 13  0  0]

将大于 30 小于 50 的所有元素替换为 0

import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.where((the_array > 30) & (the_array < 50), 0, the_array)print(an_array)

Output:

[ 0  7  0 27 13  0 71]

给所有大于 40 的元素加 5

import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.where(the_array > 40, the_array + 5, the_array)print(an_array)

Output:

[54  7 49 27 13 35 76]

用 Nan 替换数组中大于 25 的所有元素

import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.where(the_array > 25, np.NaN, the_array)print(an_array)

Output:

[nan  7. nan nan 13. nan nan]

将数组中大于 25 的所有元素替换为 1,否则为 0

import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.asarray([0 if val < 25 else 1 for val in the_array])print(an_array)

Output:

[1 0 1 1 0 1 1]

从 Nump y数组中随机抉择两行

Example 1

import numpy as np # create 2D arraythe_array = np.arange(50).reshape((5, 10)) # row manipulationnp.random.shuffle(the_array) # display random rowsrows = the_array[:2, :]print(rows)

Output:

[[10 11 12 13 14 15 16 17 18 19] [ 0  1  2  3  4  5  6  7  8  9]]

Example 2

import randomimport numpy as np # create 2D arraythe_array = np.arange(16).reshape((4, 4)) # row manipulationrows_id = random.sample(range(0, the_array.shape[1] - 1), 2) # display random rowsrows = the_array[rows_id, :]print(rows)

Output:

[[ 4  5  6  7] [ 8  9 10 11]]

Example 3

import numpy as np # create 2D arraythe_array = np.arange(16).reshape((4, 4)) number_of_rows = the_array.shape[0]random_indices = np.random.choice(number_of_rows,                                  size=2,                                  replace=False) # display random rowsrows = the_array[random_indices, :]print(rows)

Output:

[[ 4  5  6  7] [ 8  9 10 11]]

以给定的精度丑陋地打印一个 Numpy 数组

Example 1

import numpy as np x = np.array([[1.1, 0.9, 1e-6]] * 3)print(x)print(np.array_str(x, precision=1, suppress_small=True))

Output:

[[1.1e+00 9.0e-01 1.0e-06] [1.1e+00 9.0e-01 1.0e-06] [1.1e+00 9.0e-01 1.0e-06]][[1.1 0.9 0. ] [1.1 0.9 0. ] [1.1 0.9 0. ]]

Example 2

import numpy as np x = np.random.random(10)print(x) np.set_printoptions(precision=3)print(x)

Output:

[0.53828153 0.75848226 0.50046312 0.94723558 0.50415632 0.13899663 0.80301141 0.40887872 0.24837485 0.83008548][0.538 0.758 0.5   0.947 0.504 0.139 0.803 0.409 0.248 0.83 ]

Example 3

import numpy as np x = np.array([[1.1, 0.9, 1e-6]] * 3)print(x) np.set_printoptions(suppress=True)print(x)

Output:

[[1.1e+00 9.0e-01 1.0e-06] [1.1e+00 9.0e-01 1.0e-06] [1.1e+00 9.0e-01 1.0e-06]][[1.1      0.9      0.000001] [1.1      0.9      0.000001] [1.1      0.9      0.000001]]

Example 4

import numpy as np x = np.array([[1.1, 0.9, 1e-6]] * 3)print(x) np.set_printoptions(formatter={'float': '{: 0.3f}'.format})print(x)

Output:

[[1.1e+00 9.0e-01 1.0e-06] [1.1e+00 9.0e-01 1.0e-06] [1.1e+00 9.0e-01 1.0e-06]][[ 1.100  0.900  0.000] [ 1.100  0.900  0.000] [ 1.100  0.900  0.000]]

Example 5

import numpy as np  x = np.random.random((3, 3)) * 9print(np.array2string(x, formatter={'float_kind': '{0:.3f}'.format}))

Output:

[[3.479 1.490 5.674] [6.043 7.025 1.597] [0.261 8.530 2.298]]

提取 Numpy 矩阵的前 n 列

列范畴1

import numpy as npthe_arr = np.array([[0, 1, 2, 3, 5, 6, 7, 8],                    [4, 5, 6, 7, 5, 3, 2, 5],                    [8, 9, 10, 11, 4, 5, 3, 5]])print(the_arr[:, 1:5])

Output:

[[ 1  2  3  5] [ 5  6  7  5] [ 9 10 11  4]]

列范畴2

import numpy as np the_arr = np.array([[0, 1, 2, 3, 5, 6, 7, 8],                    [4, 5, 6, 7, 5, 3, 2, 5],                    [8, 9, 10, 11, 4, 5, 3, 5]])  print(the_arr[:, np.r_[0:1, 5]])

Output:

[[ 0  2  3  5] [ 4  6  7  5] [ 8 10 11  4]]

列范畴3

import numpy as np the_arr = np.array([[0, 1, 2, 3, 5, 6, 7, 8],                    [4, 5, 6, 7, 5, 3, 2, 5],                    [8, 9, 10, 11, 4, 5, 3, 5]])  print(the_arr[:, np.r_[:1, 3, 7:8]])

Output:

[[ 0  3  8] [ 4  7  5] [ 8 11  5]]

特定列

import numpy as np the_arr = np.array([[0, 1, 2, 3, 5, 6, 7, 8],                    [4, 5, 6, 7, 5, 3, 2, 5],                    [8, 9, 10, 11, 4, 5, 3, 5]])  print(the_arr[:, 1])

Output:

[1 5 9]

特定行和列

import numpy as np the_arr = np.array([[0, 1, 2, 3, 5, 6, 7, 8],                    [4, 5, 6, 7, 5, 3, 2, 5],                    [8, 9, 10, 11, 4, 5, 3, 5]])  print(the_arr[0:2, 1:3])

Output:

[[1 2] [5 6]]

从 NumPy 数组中删除值

Example 1

import numpy as np the_array = np.array([[1, 2], [3, 4]])print(the_array) the_array = np.delete(the_array, [1, 2])print(the_array)

Output:

[[1 2] [3 4]][1 4]

Example 2

import numpy as np the_array = np.array([1, 2, 3, 4])print(the_array) the_array = np.delete(the_array, np.where(the_array == 2))print(the_array)

Output:

[1 2 3 4][1 3 4]

Example 3

import numpy as np the_array = np.array([[1, 2], [3, 4]])print(the_array) the_array = np.delete(the_array, np.where(the_array == 3))print(the_array)

Output:

[[1 2] [3 4]][3 4]

将满足条件的我的项目替换为 Numpy 数组中的另一个值

将所有大于 30 的元素替换为 0

import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.where(the_array > 30, 0, the_array)print(an_array)

Output:

[ 0  7  0 27 13  0  0]

将大于 30 小于 50 的所有元素替换为 0

import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.where((the_array > 30) & (the_array < 50), 0, the_array)print(an_array)

Output:

[ 0  7  0 27 13  0 71]

给所有大于 40 的元素加 5

import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.where(the_array > 40, the_array + 5, the_array)print(an_array)

Output:

[54  7 49 27 13 35 76]

用 Nan 替换数组中大于 25 的所有元素

import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.where(the_array > 25, np.NaN, the_array)print(an_array)

Output:

[nan  7. nan nan 13. nan nan]

将数组中大于 25 的所有元素替换为 1,否则为 0

import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.asarray([0 if val < 25 else 1 for val in the_array])print(an_array)

Output:

[1 0 1 1 0 1 1]

对 NumPy 数组中的所有元素求和

import numpy as nparr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])newarr = arr.reshape(4, 3)column_sums = newarr[:, :].sum()print(column_sums)

Output:

78

创立 3D NumPy 零数组

import numpy as np the_3d_array = np.zeros((2, 2, 2))print(the_3d_array)

Output:

[[[0. 0.]  [0. 0.]] [[0. 0.]  [0. 0.]]]

计算 NumPy 数组中每一行的总和

import numpy as nparr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])newarr = arr.reshape(4, 3)print(newarr)column_sums = newarr.sum(axis=1)print(column_sums)

Output:

[[ 1  2  3] [ 4  5  6] [ 7  8  9] [10 11 12]][ 6 15 24 33]

打印没有迷信记数法的 NumPy 数组

import numpy as npnp.set_printoptions(suppress=True,                    formatter={'float_kind': '{:f}'.format})the_array = np.array([3.74, 5162, 13683628846.64, 12783387559.86, 1.81])print(the_array)

Output:

[3.740000 5162.000000 13683628846.639999 12783387559.860001 1.810000]

获取numpy数组中所有NaN值的索引列表

import numpy as npthe_array = np.array([np.nan, 2, 3, 4])array_has_nan = np.isnan(the_array)print(array_has_nan)

Output:

[ True False False False]

查看 NumPy 数组中的所有元素都是 NaN

import numpy as npthe_array = np.array([np.nan, 2, 3, 4])array_has_nan = np.isnan(the_array).all()print(array_has_nan)the_array = np.array([np.nan, np.nan, np.nan, np.nan])array_has_nan = np.isnan(the_array).all()print(array_has_nan)

Output:

FalseTrue

将列表增加到 Python 中的 NumPy 数组

import numpy as npthe_array = np.array([[1, 2], [3, 4]])columns_to_append = [5, 6]the_array = np.insert(the_array, 2, columns_to_append, axis=1)print(the_array)

Output:

[[1 2 5] [3 4 6]]

在 Numpy 中克制迷信记数法

import numpy as npnp.set_printoptions(suppress=True,                    formatter={'float_kind': '{:f}'.format})the_array = np.array([3.74, 5162, 13683628846.64, 12783387559.86, 1.81])print(the_array)

Output:

[3.740000 5162.000000 13683628846.639999 12783387559.860001 1.810000]

将具备 12 个元素的一维数组转换为 3 维数组

Example 1

import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(2, 3, 2)print(newarr)

Output:

import numpy as nparr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])newarr = arr.reshape(2, 3, 2)print(newarr)

Example 2

import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(3, 2, 2)print(newarr)

Output:

[[[ 1  2]  [ 3  4]] [[ 5  6]  [ 7  8]] [[ 9 10]  [11 12]]]

Example 3

import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(3, 2, 2).transpose()print(newarr)

Output:

[[[ 1  5  9]  [ 3  7 11]] [[ 2  6 10]  [ 4  8 12]]]

Example 4

import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(-1, 2).T.reshape(-1, 3, 4)print(newarr)

Output:

[[[ 1  3  5  7]  [ 9 11  2  4]  [ 6  8 10 12]]]

查看 NumPy 数组是否为空

import numpy as npthe_array = np.array([])is_empty = the_array.size == 0print(is_empty)the_array = np.array([1, 2, 3])is_empty = the_array.size == 0print(is_empty)

Output:

TrueFalse

在 Python 中重塑 3D 数组

Example 1

import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(2, 3, 2)print(newarr)

Output:

[[[ 1  2]  [ 3  4]  [ 5  6]] [[ 7  8]  [ 9 10]  [11 12]]]

Example 2

import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(3, 2, 2)print(newarr)

Output:

[[[ 1  2]  [ 3  4]] [[ 5  6]  [ 7  8]] [[ 9 10]  [11 12]]]

Example 3

import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(3, 2, 2).transpose()print(newarr)

Output:

[[[ 1  5  9]  [ 3  7 11]] [[ 2  6 10]  [ 4  8 12]]]

Example 4

import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(-1, 2).T.reshape(-1, 3, 4)print(newarr)

Output:

[[[ 1  3  5  7]  [ 9 11  2  4]  [ 6  8 10 12]]]

在 Python 中反复 NumPy 数组中的一列

import numpy as np the_array = np.array([1, 2, 3])repeat = 3 new_array = np.transpose([the_array] * repeat)print(new_array)

Output:

[[1 1 1] [2 2 2] [3 3 3]]

在 NumPy 数组中找到跨维度的平均值

import numpy as np the_array = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])mean_array = the_array.mean(axis=0)print(mean_array)

Output:

[3. 4. 5. 6.]

查看 NumPy 数组中的 NaN 元素

import numpy as npthe_array = np.array([np.nan, 2, 3, 4])array_has_nan = np.isnan(the_array).any()print(array_has_nan)the_array = np.array([1, 2, 3, 4])array_has_nan = np.isnan(the_array).any()print(array_has_nan)

Output:

TrueFalse

格式化 NumPy 数组的打印形式

Example 1

import numpy as np x = np.array([[1.1, 0.9, 1e-6]] * 3)print(x)print(np.array_str(x, precision=1, suppress_small=True))

Output:

[[1.1e+00 9.0e-01 1.0e-06] [1.1e+00 9.0e-01 1.0e-06] [1.1e+00 9.0e-01 1.0e-06]][[1.1 0.9 0. ] [1.1 0.9 0. ] [1.1 0.9 0. ]]

Example 2

import numpy as np x = np.random.random(10)print(x) np.set_printoptions(precision=3)print(x)

Output:

[0.53828153 0.75848226 0.50046312 0.94723558 0.50415632 0.13899663 0.80301141 0.40887872 0.24837485 0.83008548][0.538 0.758 0.5   0.947 0.504 0.139 0.803 0.409 0.248 0.83 ]

Example 3

import numpy as np x = np.array([[1.1, 0.9, 1e-6]] * 3)print(x) np.set_printoptions(suppress=True)print(x)

Output:

[[1.1e+00 9.0e-01 1.0e-06] [1.1e+00 9.0e-01 1.0e-06] [1.1e+00 9.0e-01 1.0e-06]][[1.1      0.9      0.000001] [1.1      0.9      0.000001] [1.1      0.9      0.000001]]

Example 4

import numpy as np x = np.array([[1.1, 0.9, 1e-6]] * 3)print(x) np.set_printoptions(formatter={'float': '{: 0.3f}'.format})print(x)

Output:

[[1.1e+00 9.0e-01 1.0e-06] [1.1e+00 9.0e-01 1.0e-06] [1.1e+00 9.0e-01 1.0e-06]][[ 1.100  0.900  0.000] [ 1.100  0.900  0.000] [ 1.100  0.900  0.000]]

Example 5

import numpy as np  x = np.random.random((3, 3)) * 9print(np.array2string(x, formatter={'float_kind': '{0:.3f}'.format}))

Output:

[[3.479 1.490 5.674] [6.043 7.025 1.597] [0.261 8.530 2.298]]

乘以Numpy数组的每个元素

Example 1

import numpy as npthe_array = np.array([[1, 2, 3], [1, 2, 3]])prod = np.prod(the_array)print(prod)

Output:

36

Example 2

import numpy as npthe_array = np.array([[1, 2, 3], [1, 2, 3]])prod = np.prod(the_array, 0)print(prod)

Output:

[1 4 9]

Example 3

import numpy as npthe_array = np.array([[1, 2, 3], [1, 2, 3]])prod = np.prod(the_array, 1)print(prod)

Output:

[6, 6]

Example 4

import numpy as npthe_array = np.array([1, 2, 3])prod = np.prod(the_array)print(prod)

Output:

6

在 NumPy 中生成随机数

Example 1

import numpy as np# create 2D arraythe_array = np.arange(50).reshape((5, 10))# row manipulationnp.random.shuffle(the_array)# display random rowsrows = the_array[:2, :]print(rows)

Output:

[[10 11 12 13 14 15 16 17 18 19] [ 0  1  2  3  4  5  6  7  8  9]]

Example 2

import randomimport numpy as np # create 2D arraythe_array = np.arange(16).reshape((4, 4)) # row manipulationrows_id = random.sample(range(0, the_array.shape[1] - 1), 2) # display random rowsrows = the_array[rows_id, :]print(rows)

Output:

[[ 4  5  6  7] [ 8  9 10 11]]

Example 3

import numpy as np # create 2D arraythe_array = np.arange(16).reshape((4, 4)) number_of_rows = the_array.shape[0]random_indices = np.random.choice(number_of_rows,                                  size=2,                                  replace=False) # display random rowsrows = the_array[random_indices, :]print(rows)

Output:

[[ 4  5  6  7] [ 8  9 10 11]]

Numpy 将具备 8 个元素的一维数组转换为 Python 中的二维数组

4 行 2 列

import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8]) newarr = arr.reshape(4, 2)print(newarr)

Output:

[[1 2] [3 4] [5 6] [7 8]]

2 行 4 列

import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8]) newarr = arr.reshape(2, 4)print(newarr)

Output:

[[1 2 3 4] [5 6 7 8]]

在 Python 中应用 numpy.all()

import numpy as npthelist = [[True, True], [True, True]]thebool = np.all(thelist)print(thebool)thelist = [[False, False], [False, False]]thebool = np.all(thelist)print(thebool)thelist = [[True, False], [True, False]]thebool = np.all(thelist)print(thebool)

Output:

True

将一维数组转换为二维数组

4 行 2 列

import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8]) newarr = arr.reshape(4, 2)print(newarr)

Output:

[[1 2] [3 4] [5 6] [7 8]]

2 行 4 列

import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8]) newarr = arr.reshape(2, 4)print(newarr)

Output:

[[1 2 3 4] [5 6 7 8]]

Example 3

import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8]) newarr = np.reshape(arr, (-1, 2))print(newarr)

Output:

[[1 2] [3 4] [5 6] [7 8]]

通过增加新轴将一维数组转换为二维数组

import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8]) newarr = np.reshape(arr, (1, arr.size))print(newarr)

Output:

[[1 2 3 4 5 6 7 8]]

Example 5

import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8]) newarr = np.reshape(arr, (-1, 4))print(newarr)

Output:

[[1 2 3 4] [5 6 7 8]]

计算 NumPy 数组中惟一值的频率

import numpy as np the_array = np.array([9, 7, 4, 7, 3, 5, 9]) frequencies = np.asarray((np.unique(the_array, return_counts=True))).Tprint(frequencies)

Output:

[[3 1] [4 1] [5 1] [7 2] [9 2]]

在一列中找到平均值

import numpy as np the_array = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])mean_array = the_array.mean(axis=0)print(mean_array)

Output:

[3. 4. 5. 6.]

在 Numpy 数组的长度、维度、大小

Example 1

import numpy as nparr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])print(arr.ndim)print(arr.shape)arr = np.array([[1, 1, 1, 0], [0, 5, 0, 1], [2, 1, 3, 10]])print(arr.ndim)print(arr.shape)arr = np.array([[[1, 1, 1, 0], [0, 5, 0, 1], [2, 1, 3, 10]]])print(arr.ndim)print(arr.shape)

Output:

1(12,)2(3, 4)3(1, 3, 4)

Example 2

import numpy as np arr = np.array([[1, 1, 1, 0], [0, 5, 0, 1], [2, 1, 3, 10]])print(np.info(arr))

Output:

class:  ndarrayshape:  (3, 4)strides:  (16, 4)itemsize:  4aligned:  Truecontiguous:  Truefortran:  Falsedata pointer: 0x25da9fd5710byteorder:  littlebyteswap:  Falsetype: int32None

在 NumPy 数组中找到最大值的索引

import numpy as np the_array = np.array([11, 22, 53, 14, 15]) max_index_col = np.argmax(the_array, axis=0)print(max_index_col)

Output:

2

按降序对 NumPy 数组进行排序

按降序对 Numpy 进行排序

import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) sort_array = np.sort(the_array)[::-1]print(sort_array)

Output:

[71 49 44 35 27 13  7]

按降序对 2D Numpy 进行排序

import numpy as np the_array = np.array([[49, 7, 4], [27, 13, 35]]) sort_array = np.sort(the_array)[::1]print(sort_array)

Output:

[[ 4  7 49] [13 27 35]]

按降序对 Numpy 进行排序

import numpy as np the_array = np.array([[49, 7, 4], [27, 13, 35], [12, 3, 5]]) a_idx = np.argsort(-the_array)sort_array = np.take_along_axis(the_array, a_idx, axis=1)print(sort_array)

Output:

[[49  7  4] [35 27 13] [12  5  3]]

Numpy 从二维数组中获取随机的一组行

Example 1

import numpy as np# create 2D arraythe_array = np.arange(50).reshape((5, 10))# row manipulationnp.random.shuffle(the_array)# display random rowsrows = the_array[:2, :]print(rows)

Output:

[[10 11 12 13 14 15 16 17 18 19] [ 0  1  2  3  4  5  6  7  8  9]]

Example 2

import randomimport numpy as np # create 2D arraythe_array = np.arange(16).reshape((4, 4)) # row manipulationrows_id = random.sample(range(0, the_array.shape[1] - 1), 2) # display random rowsrows = the_array[rows_id, :]print(rows)

Output:

[[ 4  5  6  7] [ 8  9 10 11]]

Example 3

import numpy as np # create 2D arraythe_array = np.arange(16).reshape((4, 4)) number_of_rows = the_array.shape[0]random_indices = np.random.choice(number_of_rows,                                  size=2,                                  replace=False) # display random rowsrows = the_array[random_indices, :]print(rows)

Output:

[[ 4  5  6  7] [ 8  9 10 11]]

将 Numpy 数组转换为 JSON

import numpy as np the_array = np.array([[49, 7, 44], [27, 13, 35], [27, 13, 35]])lists = the_array.tolist()print([{'x': x[0], 'y': x[1], 'z': x[2]} for i, x in enumerate(lists)])

Output:

[{'x': 49, 'y': 7, 'z': 44}, {'x': 27, 'y': 13, 'z': 35}, {'x': 27, 'y': 13, 'z': 35}]

查看 NumPy 数组中是否存在值

import numpy as np the_array = np.array([[1, 2], [3, 4]])n = 3 if n in the_array:    print(True)else:    print(False)

Output:

TrueFalse

创立一个 3D NumPy 数组

import numpy as np the_3d_array = np.ones((2, 2, 2))print(the_3d_array)

Output:

[[[1. 1.]  [1. 1.]] [[1. 1.]  [1. 1.]]]

在numpy中将字符串数组转换为浮点数数组

import numpy as np  string_arr = np.array(['1.1', '2.2', '3.3'])float_arr = string_arr.astype(np.float64)print(float_arr)

Output:

[1.1 2.2 3.3]

从 Python 的 numpy 数组中随机抉择

Example 1

import numpy as np # create 2D arraythe_array = np.arange(50).reshape((5, 10)) # row manipulationnp.random.shuffle(the_array) # display random rowsrows = the_array[:2, :]print(rows)

Output:

[[10 11 12 13 14 15 16 17 18 19] [ 0  1  2  3  4  5  6  7  8  9]]

Example 2

import randomimport numpy as np # create 2D arraythe_array = np.arange(16).reshape((4, 4)) # row manipulationrows_id = random.sample(range(0, the_array.shape[1] - 1), 2) # display random rowsrows = the_array[rows_id, :]print(rows)

Output:

[[ 4  5  6  7] [ 8  9 10 11]]

Example 3

import numpy as np # create 2D arraythe_array = np.arange(16).reshape((4, 4)) number_of_rows = the_array.shape[0]random_indices = np.random.choice(number_of_rows,                                  size=2,                                  replace=False) # display random rowsrows = the_array[random_indices, :]print(rows)

Output:

[[ 4  5  6  7] [ 8  9 10 11]]

不截断地打印残缺的 NumPy 数组

import numpy as npnp.set_printoptions(threshold=np.inf)the_array = np.arange(100)print(the_array)

Output:

[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99]

将 Numpy 转换为列表

import numpy as npthe_array = np.array([[1, 2], [3, 4]])print(the_array.tolist())

Output:

[[1, 2], [3, 4]]

将字符串数组转换为浮点数数组

import numpy as npstring_arr = np.array(['1.1', '2.2', '3.3'])float_arr = string_arr.astype(np.float64)print(float_arr)

Output:

[1.1 2.2 3.3]

计算 NumPy 数组中每一列的总和

import numpy as nparr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])newarr = arr.reshape(4, 3)print(newarr)column_sums = newarr.sum(axis=0)print(column_sums)

Output:

[[ 1  2  3] [ 4  5  6] [ 7  8  9] [10 11 12]][22 26 30]

应用 Python 中的值创立 3D NumPy 数组

import numpy as npthe_3d_array = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])print(the_3d_array)

Output:

[[[1 2]  [3 4]] [[5 6]  [7 8]]]

计算不同长度的 Numpy 数组的平均值

import numpy as np x = np.array([[1, 2], [3, 4]])y = np.array([[1, 2, 3], [3, 4, 5]])z = np.array([[7], [8]]) arr = np.ma.empty((2, 3, 3))arr.mask = Truearr[:x.shape[0], :x.shape[1], 0] = xarr[:y.shape[0], :y.shape[1], 1] = yarr[:z.shape[0], :z.shape[1], 2] = zprint(arr.mean(axis=2))

Output:

[[3.0 2.0 3.0] [4.666666666666667 4.0 5.0]]

从 Numpy 数组中删除 nan 值

Example 1

import numpy as np x = np.array([np.nan, 2, 3, 4])x = x[~np.isnan(x)]print(x)

Output:

[2. 3. 4.]

Example 2

import numpy as np x = np.array([    [5, np.nan],    [np.nan, 0],    [1, 2],    [3, 4]]) x = x[~np.isnan(x).any(axis=1)]print(x)

Output:

[[1. 2.] [3. 4.]]

向 NumPy 数组增加一列

import numpy as np the_array = np.array([[1, 2], [3, 4]]) columns_to_append = np.array([[5], [6]])the_array = np.append(the_array, columns_to_append, 1)print(the_array)

Output:

[[1 2 5] [3 4 6]]

在 Numpy Array 中打印浮点值时如何克制迷信记数法

import numpy as npnp.set_printoptions(suppress=True,                    formatter={'float_kind': '{:f}'.format})the_array = np.array([3.74, 5162, 13683628846.64, 12783387559.86, 1.81])print(the_array)

Output:

[3.740000 5162.000000 13683628846.639999 12783387559.860001 1.810000]

Numpy 将 1d 数组重塑为 1 列的 2d 数组

import numpy as nparr = np.array([1, 2, 3, 4, 5, 6, 7, 8])newarr = arr.reshape(arr.shape[0], -1)print(newarr)

Output:

[[1] [2] [3] [4] [5] [6] [7] [8]]

初始化 NumPy 数组

import numpy as npthearray = np.array([[1, 2], [3, 4], [5, 6]])print(thearray)

Output:

[[1 2] [3 4] [5 6]]

创立反复一行

import numpy as np the_array = np.array([1, 2, 3])repeat = 3 new_array = np.tile(the_array, (repeat, 1))print(new_array)

Output:

[[1 2 3] [1 2 3] [1 2 3]]

将 NumPy 数组附加到 Python 中的空数组

import numpy as npthe_array = np.array([1, 2, 3, 4])empty_array = np.array([])new_array = np.append(empty_array, the_array)print(new_array)

Output:

[1. 2. 3. 4.]

找到 Numpy 数组的平均值

计算每列的平均值

import numpy as np the_array = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])mean_array = the_array.mean(axis=0)print(mean_array)

Output:

[3. 4. 5. 6.]

计算每一行的平均值

import numpy as np the_array = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])mean_array = the_array.mean(axis=1)print(mean_array)

Output:

[2.5 6.5]

仅第一列的平均值

import numpy as np the_array = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])mean_array = the_array[:, 0].mean()print(mean_array)

Output:

3.0

仅第二列的平均值

import numpy as np the_array = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])mean_array = the_array[:, 0].mean()print(mean_array)

Output:

4.0

检测 NumPy 数组是否蕴含至多一个非数字值

import numpy as npthe_array = np.array([np.nan, 2, 3, 4])array_has_nan = np.isnan(the_array).any()print(array_has_nan)the_array = np.array([1, 2, 3, 4])array_has_nan = np.isnan(the_array).any()print(array_has_nan)

Output:

TrueFalse

在 Python 中附加 NumPy 数组

import numpy as npthe_array = np.array([[0, 1], [2, 3]])row_to_append = np.array([[4, 5]])the_array = np.append(the_array, row_to_append, 0)print(the_array)print('*' * 10)columns_to_append = np.array([[7], [8], [9]])the_array = np.append(the_array, columns_to_append, 1)print(the_array)

Output:

[[0 1] [2 3] [4 5]]**********[[0 1 7] [2 3 8] [4 5 9]]

应用 numpy.any()

import numpy as np thearr = [[True, False], [True, True]]thebool = np.any(thearr)print(thebool)  thearr = [[False, False], [False, False]]thebool = np.any(thearr)print(thebool)

Output:

TrueFalse

取得 NumPy 数组的转置

import numpy as np the_array = np.array([[1, 2], [3, 4]])print(the_array) print(the_array.T)

Output:

[[1 2] [3 4]][[1 3] [2 4]]

获取和设置NumPy数组的数据类型

import numpy as np type1 = np.array([1, 2, 3, 4, 5, 6])type2 = np.array([1.5, 2.5, 0.5, 6])type3 = np.array(['a', 'b', 'c'])type4 = np.array(["Canada", "Australia"], dtype='U5')type5 = np.array([555, 666], dtype=float)  print(type1.dtype)print(type2.dtype)print(type3.dtype)print(type4.dtype)print(type5.dtype) print(type4)

Output:

int32float64<U1<U5float64['Canad' 'Austr']

取得NumPy数组的形态

import numpy as np array1d = np.array([1, 2, 3, 4, 5, 6])array2d = np.array([[1, 2, 3], [4, 5, 6]])array3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]) print(array1d.shape)print(array2d.shape)print(array3d.shape)

Output:

(6,)(2, 3)(2, 2, 3)

取得 1、2 或 3 维 NumPy 数组

import numpy as np array1d = np.array([1, 2, 3, 4, 5, 6])print(array1d.ndim)  # 1 array2d = np.array([[1, 2, 3], [4, 5, 6]])print(array2d.ndim)  # 2 array3d = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])array3d = array3d.reshape(2, 3, 2)print(array3d.ndim)  # 3

Output:

123

重塑 NumPy 数组

import numpy as np thearray = np.array([1, 2, 3, 4, 5, 6, 7, 8])thearray = thearray.reshape(2, 4)print(thearray) print("-" * 10)thearray = thearray.reshape(4, 2)print(thearray) print("-" * 10)thearray = thearray.reshape(8, 1)print(thearray)

Output:

[[1 2 3 4] [5 6 7 8]]----------[[1 2] [3 4] [5 6] [7 8]]----------[[1] [2] [3] [4] [5] [6] [7] [8]]

调整 NumPy 数组的大小

import numpy as np thearray = np.array([1, 2, 3, 4, 5, 6, 7, 8])thearray.resize(4)print(thearray) print("-" * 10)thearray = np.array([1, 2, 3, 4, 5, 6, 7, 8])thearray.resize(2, 4)print(thearray) print("-" * 10)thearray = np.array([1, 2, 3, 4, 5, 6, 7, 8])thearray.resize(3, 3)print(thearray)

Output:

[1 2 3 4]----------[[1 2 3 4] [5 6 7 8]]----------[[1 2 3] [4 5 6] [7 8 0]]

将 List 或 Tuple 转换为 NumPy 数组

import numpy as np thelist = [1, 2, 3]print(type(thelist))  # <class 'list'> array1 = np.array(thelist)print(type(array1))  # <class 'numpy.ndarray'>  thetuple = ((1, 2, 3))print(type(thetuple))  # <class 'tuple'> array2 = np.array(thetuple)print(type(array2))  # <class 'numpy.ndarray'> array3 = np.array([thetuple, thelist, array1])print(array3)

Output:

<class 'list'><class 'numpy.ndarray'><class 'tuple'><class 'numpy.ndarray'>[[1 2 3] [1 2 3] [1 2 3]]

应用 arange 函数创立 NumPy 数组

import numpy as np array1d = np.arange(5)  # 1 row and 5 columnsprint(array1d) array1d = np.arange(0, 12, 2)  # 1 row and 6 columnsprint(array1d) array2d = np.arange(0, 12, 2).reshape(2, 3)  # 2 rows 3 columnsprint(array2d) array3d = np.arange(9).reshape(3, 3)  # 3 rows and columnsprint(array3d)

Output:

[0 1 2 3 4][ 0  2  4  6  8 10][[ 0  2  4] [ 6  8 10]][[0 1 2] [3 4 5] [6 7 8]]

应用 linspace() 创立 NumPy 数组

import numpy as np array1d = np.linspace(1, 12, 2)print(array1d) array1d = np.linspace(1, 12, 4)print(array1d) array2d = np.linspace(1, 12, 12).reshape(4, 3)print(array2d)

Output:

[ 1. 12.][ 1.          4.66666667  8.33333333 12.        ][[ 1.  2.  3.] [ 4.  5.  6.] [ 7.  8.  9.] [10. 11. 12.]]

NumPy 日志空间数组示例

import numpy as np thearray = np.logspace(5, 10, num=10, base=10000000.0, dtype=float)print(thearray)

Output:

[1.00000000e+35 7.74263683e+38 5.99484250e+42 4.64158883e+46 3.59381366e+50 2.78255940e+54 2.15443469e+58 1.66810054e+62 1.29154967e+66 1.00000000e+70]

创立 Zeros NumPy 数组

import numpy as np array1d = np.zeros(3)print(array1d) array2d = np.zeros((2, 4))print(array2d)

Output:

[0. 0. 0.][[0. 0. 0. 0.] [0. 0. 0. 0.]]

NumPy One 数组示例

import numpy as np array1d = np.ones(3)print(array1d) array2d = np.ones((2, 4))print(array2d)

Output:

[1. 1. 1.][[1. 1. 1. 1.] [1. 1. 1. 1.]]

NumPy 残缺数组示例

import numpy as np array1d = np.full((3), 2)print(array1d) array2d = np.full((2, 4), 3)print(array2d)

Output:

[2 2 2][[3 3 3 3] [3 3 3 3]]

NumPy Eye 数组示例

import numpy as np array1 = np.eye(3, dtype=int)print(array1) array2 = np.eye(5, k=2)print(array2)

Output:

[[1 0 0] [0 1 0] [0 0 1]][[0. 0. 1. 0. 0.] [0. 0. 0. 1. 0.] [0. 0. 0. 0. 1.] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.]]

NumPy 生成随机数数组

import numpy as np print(np.random.rand(3, 2))  # Uniformly distributed values.print(np.random.randn(3, 2))  # Normally distributed values. # Uniformly distributed integers in a given range.print(np.random.randint(2, size=10))print(np.random.randint(5, size=(2, 4)))

Output:

[[0.68428242 0.62467648] [0.28595395 0.96066372] [0.63394485 0.94036659]][[0.29458704 0.84015551] [0.42001253 0.89660667] [0.50442113 0.46681958]][0 1 1 0 0 0 0 1 0 0][[3 3 2 3] [2 1 2 0]]

NumPy 标识和对角线数组示例

import numpy as np print(np.identity(3)) print(np.diag(np.arange(0, 8, 2))) print(np.diag(np.diag(np.arange(9).reshape((3,3)))))

Output:

[[1. 0. 0.] [0. 1. 0.] [0. 0. 1.]][[0 0 0 0] [0 2 0 0] [0 0 4 0] [0 0 0 6]][[0 0 0] [0 4 0] [0 0 8]]

NumPy 索引示例

import numpy as np array1d = np.array([1, 2, 3, 4, 5, 6])print(array1d[0])   # Get first valueprint(array1d[-1])  # Get last valueprint(array1d[3])   # Get 4th value from firstprint(array1d[-5])  # Get 5th value from last # Get multiple valuesprint(array1d[[0, -1]]) print("-" * 10) array2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])print(array2d)print("-" * 10) print(array2d[0, 0])   # Get first row first colprint(array2d[0, 1])   # Get first row second colprint(array2d[0, 2])   # Get first row third col print(array2d[0, 1])   # Get first row second col print(array2d[1, 1])   # Get second row second colprint(array2d[2, 1])   # Get third row second col

Output:

1642[1 6]----------[[1 2 3] [4 5 6] [7 8 9]]----------123258

多维数组中的 NumPy 索引

import numpy as np array3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])print(array3d) print(array3d[0, 0, 0])print(array3d[0, 0, 1])print(array3d[0, 0, 2]) print(array3d[0, 1, 0])print(array3d[0, 1, 1])print(array3d[0, 1, 2]) print(array3d[1, 0, 0])print(array3d[1, 0, 1])print(array3d[1, 0, 2]) print(array3d[1, 1, 0])print(array3d[1, 1, 1])print(array3d[1, 1, 2])

Output:

[[[ 1  2  3]  [ 4  5  6]]  [[ 7  8  9]  [10 11 12]]]123456789101112

NumPy 单维切片示例

import numpy as np array1d = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) print(array1d[4:])  # From index 4 to last index print(array1d[:4])  # From index 0 to 4 index print(array1d[4:7])  # From index 4(included) up to index 7(excluded) print(array1d[:-1])  # Excluded last element print(array1d[:-2])  # Up to second last index(negative index) print(array1d[::-1])  # From last to first in reverse order(negative step) print(array1d[::-2])  # All odd numbers in reversed order print(array1d[-2::-2])  # All even numbers in reversed order print(array1d[::])  # All elements

Output:

[4 5 6 7 8 9][0 1 2 3][4 5 6][0 1 2 3 4 5 6 7 8][0 1 2 3 4 5 6 7][9 8 7 6 5 4 3 2 1 0][9 7 5 3 1][8 6 4 2 0][0 1 2 3 4 5 6 7 8 9]

NumPy 数组中的多维切片

import numpy as np array2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print("-" * 10)print(array2d[:, 0:2])  # 2nd and 3rd col print("-" * 10)print(array2d[1:3, 0:3])  # 2nd and 3rd row print("-" * 10)print(array2d[-1::-1, -1::-1])  # Reverse an array

Output:

----------[[1 2] [4 5] [7 8]]----------[[4 5 6] [7 8 9]]----------[[9 8 7] [6 5 4] [3 2 1]]

翻转 NumPy 数组的轴程序

import numpy as np array2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])print(array2d) print("-" * 10) # Permute the dimensions of an array.arrayT = np.transpose(array2d)print(arrayT) print("-" * 10) # Flip array in the left/right direction.arrayFlr = np.fliplr(array2d)print(arrayFlr) print("-" * 10) # Flip array in the up/down direction.arrayFud = np.flipud(array2d)print(arrayFud) print("-" * 10) # Rotate an array by 90 degrees in the plane specified by axes.arrayRot90 = np.rot90(array2d)print(arrayRot90)

Output:

[[1 2 3] [4 5 6] [7 8 9]]----------[[1 4 7] [2 5 8] [3 6 9]]----------[[3 2 1] [6 5 4] [9 8 7]]----------[[7 8 9] [4 5 6] [1 2 3]]----------[[3 6 9] [2 5 8] [1 4 7]]

NumPy 数组的连贯和重叠

import numpy as np array1 = np.array([[1, 2, 3], [4, 5, 6]])array2 = np.array([[7, 8, 9], [10, 11, 12]]) # Stack arrays in sequence horizontally (column wise).arrayH = np.hstack((array1, array2))print(arrayH) print("-" * 10) # Stack arrays in sequence vertically (row wise).arrayV = np.vstack((array1, array2))print(arrayV) print("-" * 10) # Stack arrays in sequence depth wise (along third axis).arrayD = np.dstack((array1, array2))print(arrayD) print("-" * 10) # Appending arrays after each other, along a given axis.arrayC = np.concatenate((array1, array2))print(arrayC) print("-" * 10) # Append values to the end of an array.arrayA = np.append(array1, array2, axis=0)print(arrayA) print("-" * 10)arrayA = np.append(array1, array2, axis=1)print(arrayA)

Output:

[[ 1  2  3  7  8  9] [ 4  5  6 10 11 12]]----------[[ 1  2  3] [ 4  5  6] [ 7  8  9] [10 11 12]]----------[[[ 1  7]  [ 2  8]  [ 3  9]]  [[ 4 10]  [ 5 11]  [ 6 12]]]----------[[ 1  2  3] [ 4  5  6] [ 7  8  9] [10 11 12]]----------[[ 1  2  3] [ 4  5  6] [ 7  8  9] [10 11 12]]----------[[ 1  2  3  7  8  9] [ 4  5  6 10 11 12]]

NumPy 数组的算术运算

import numpy as np array1 = np.array([[1, 2, 3], [4, 5, 6]])array2 = np.array([[7, 8, 9], [10, 11, 12]]) print(array1 + array2)print("-" * 20) print(array1 - array2)print("-" * 20) print(array1 * array2)print("-" * 20) print(array2 / array1)print("-" * 40) print(array1 ** array2)print("-" * 40)

Output:

[[ 8 10 12] [14 16 18]]--------------------[[-6 -6 -6] [-6 -6 -6]]--------------------[[ 7 16 27] [40 55 72]]--------------------[[7.  4.  3. ] [2.5 2.2 2. ]]----------------------------------------[[          1         256       19683] [    1048576    48828125 -2118184960]]----------------------------------------

NumPy 数组上的标量算术运算

import numpy as np array1 = np.array([[10, 20, 30], [40, 50, 60]]) print(array1 + 2)print("-" * 20) print(array1 - 5)print("-" * 20) print(array1 * 2)print("-" * 20) print(array1 / 5)print("-" * 20) print(array1 ** 2)print("-" * 20)

Output:

[[12 22 32] [42 52 62]]--------------------[[ 5 15 25] [35 45 55]]--------------------[[ 20  40  60] [ 80 100 120]]--------------------[[ 2.  4.  6.] [ 8. 10. 12.]]--------------------[[ 100  400  900] [1600 2500 3600]]--------------------

NumPy 初等数学函数

import numpy as np array1 = np.array([[10, 20, 30], [40, 50, 60]]) print(np.sin(array1))print("-" * 40) print(np.cos(array1))print("-" * 40) print(np.tan(array1))print("-" * 40) print(np.sqrt(array1))print("-" * 40) print(np.exp(array1))print("-" * 40) print(np.log10(array1))print("-" * 40)

Output:

[[-0.54402111  0.91294525 -0.98803162] [ 0.74511316 -0.26237485 -0.30481062]]----------------------------------------[[-0.83907153  0.40808206  0.15425145] [-0.66693806  0.96496603 -0.95241298]]----------------------------------------[[ 0.64836083  2.23716094 -6.4053312 ] [-1.11721493 -0.27190061  0.32004039]]----------------------------------------[[3.16227766 4.47213595 5.47722558] [6.32455532 7.07106781 7.74596669]]----------------------------------------[[2.20264658e+04 4.85165195e+08 1.06864746e+13] [2.35385267e+17 5.18470553e+21 1.14200739e+26]]----------------------------------------[[1.         1.30103    1.47712125] [1.60205999 1.69897    1.77815125]]----------------------------------------

NumPy Element Wise 数学运算

import numpy as np array1 = np.array([[10, 20, 30], [40, 50, 60]])array2 = np.array([[2, 3, 4], [4, 6, 8]])array3 = np.array([[-2, 3.5, -4], [4.05, -6, 8]]) print(np.add(array1, array2))print("-" * 40) print(np.power(array1, array2))print("-" * 40) print(np.remainder((array2), 5))print("-" * 40) print(np.reciprocal(array3))print("-" * 40) print(np.sign(array3))print("-" * 40) print(np.ceil(array3))print("-" * 40) print(np.round(array3))print("-" * 40)

Output:

[[12 23 34] [44 56 68]]----------------------------------------[[        100        8000      810000] [    2560000 -1554869184 -1686044672]]----------------------------------------[[2 3 4] [4 1 3]]----------------------------------------[[-0.5         0.28571429 -0.25      ] [ 0.24691358 -0.16666667  0.125     ]]----------------------------------------[[-1.  1. -1.] [ 1. -1.  1.]]----------------------------------------[[-2.  4. -4.] [ 5. -6.  8.]]----------------------------------------[[-2.  4. -4.] [ 4. -6.  8.]]----------------------------------------

NumPy 聚合和统计函数

import numpy as np array1 = np.array([[10, 20, 30], [40, 50, 60]]) print("Mean: ", np.mean(array1)) print("Std: ", np.std(array1)) print("Var: ", np.var(array1)) print("Sum: ", np.sum(array1)) print("Prod: ", np.prod(array1))

Output:

Mean:  35.0Std:  17.07825127659933Var:  291.6666666666667Sum:  210Prod:  720000000

Where 函数的 NumPy 示例

import numpy as np before = np.array([[1, 2, 3], [4, 5, 6]]) # If element is less than 4, mul by 2 else by 3after = np.where(before < 4, before * 2, before * 3) print(after)

Output:

[[ 2  4  6] [12 15 18]]

Select 函数的 NumPy 示例

import numpy as np before = np.array([[1, 2, 3], [4, 5, 6]]) # If element is less than 4, mul by 2 else by 3after = np.select([before < 4, before], [before * 2, before * 3]) print(after)

Output:

[[ 2  4  6] [12 15 18]]

选择函数的 NumPy 示例

import numpy as np before = np.array([[0, 1, 2], [2, 0, 1], [1, 2, 0]])choices = [5, 10, 15] after = np.choose(before, choices)print(after) print("-" * 10) before = np.array([[0, 0, 0], [2, 2, 2], [1, 1, 1]])choice1 = [5, 10, 15]choice2 = [8, 16, 24]choice3 = [9, 18, 27] after = np.choose(before, (choice1, choice2, choice3))print(after)

Output:

[[ 5 10 15] [15  5 10] [10 15  5]]----------[[ 5 10 15] [ 9 18 27] [ 8 16 24]]

NumPy 逻辑操作,用于依据给定条件从数组中选择性地选取值

import numpy as np thearray = np.array([[10, 20, 30], [14, 24, 36]]) print(np.logical_or(thearray < 10, thearray > 15))print("-" * 30) print(np.logical_and(thearray < 10, thearray > 15))print("-" * 30) print(np.logical_not(thearray < 20))print("-" * 30)

Output:

[[False  True  True] [False  True  True]]------------------------------[[False False False] [False False False]]------------------------------[[False  True  True] [False  True  True]]------------------------------

规范汇合操作的 NumPy 示例

import numpy as np array1 = np.array([[10, 20, 30], [14, 24, 36]])array2 = np.array([[20, 40, 50], [24, 34, 46]]) # Find the union of two arrays.print(np.union1d(array1, array2)) # Find the intersection of two arrays.print(np.intersect1d(array1, array2)) # Find the set difference of two arrays.print(np.setdiff1d(array1, array2))

Output:

[10 14 20 24 30 34 36 40 46 50][20 24][10 14 30 36]

本文由mdnice多平台公布