入口

入口就是线程池执行工作的办法

/**     * Executes the given task sometime in the future.  The task     * may execute in a new thread or in an existing pooled thread.     *     * If the task cannot be submitted for execution, either because this     * executor has been shutdown or because its capacity has been reached,     * the task is handled by the current {@code RejectedExecutionHandler}.     *     * @param command the task to execute     * @throws RejectedExecutionException at discretion of     *         {@code RejectedExecutionHandler}, if the task     *         cannot be accepted for execution     * @throws NullPointerException if {@code command} is null     */    public void execute(Runnable command) { //入口        if (command == null)            throw new NullPointerException();        /*         * Proceed in 3 steps:         *         * 1. If fewer than corePoolSize threads are running, try to         * start a new thread with the given command as its first         * task.  The call to addWorker atomically checks runState and         * workerCount, and so prevents false alarms that would add         * threads when it shouldn't, by returning false.         *         * 2. If a task can be successfully queued, then we still need         * to double-check whether we should have added a thread         * (because existing ones died since last checking) or that         * the pool shut down since entry into this method. So we         * recheck state and if necessary roll back the enqueuing if         * stopped, or start a new thread if there are none.         *         * 3. If we cannot queue task, then we try to add a new         * thread.  If it fails, we know we are shut down or saturated         * and so reject the task.         */        int c = ctl.get();                //申请数量小于最小数量        if (workerCountOf(c) < corePoolSize) {            if (addWorker(command, true))                return;            c = ctl.get();        }        //申请数量小于阻塞队列容量        if (isRunning(c) && workQueue.offer(command)) { //入阻塞队列            int recheck = ctl.get();            if (! isRunning(recheck) && remove(command))                reject(command);            else if (workerCountOf(recheck) == 0)                addWorker(null, false);        } //申请数量小于最大线程数量        else if (!addWorker(command, false))            reject(command);    }

分了好几种状况,按以后并发申请数量的大小来分类:

  1. 小于最小数量
  2. 小于阻塞队列容量
  3. 小于最大数量

小于最小数量的状况

入口

代码地位

代码阐明

//申请数量小于最小数量        if (workerCountOf(c) < corePoolSize) {            if (addWorker(command, true)) //创立新的线程,并且增加新线程到线程池                return;            c = ctl.get();        }

创立新的线程,并且增加到线程池

外围步骤

  1. 创立新的线程
  2. 增加新线程到线程池
  3. 执行Worker线程
/**     * 创立新的线程,并且增加新线程到线程池     *      * ---     * Checks if a new worker can be added with respect to current     * pool state and the given bound (either core or maximum). If so,     * the worker count is adjusted accordingly, and, if possible, a     * new worker is created and started, running firstTask as its     * first task. This method returns false if the pool is stopped or     * eligible to shut down. It also returns false if the thread     * factory fails to create a thread when asked.  If the thread     * creation fails, either due to the thread factory returning     * null, or due to an exception (typically OutOfMemoryError in     * Thread.start()), we roll back cleanly.     *     * @param firstTask the task the new thread should run first (or     * null if none). Workers are created with an initial first task     * (in method execute()) to bypass queuing when there are fewer     * than corePoolSize threads (in which case we always start one),     * or when the queue is full (in which case we must bypass queue).     * Initially idle threads are usually created via     * prestartCoreThread or to replace other dying workers.     *     * @param core if true use corePoolSize as bound, else     * maximumPoolSize. (A boolean indicator is used here rather than a     * value to ensure reads of fresh values after checking other pool     * state).     * @return true if successful     */    private boolean addWorker(Runnable firstTask, boolean core) {        retry:        for (;;) {            int c = ctl.get();            int rs = runStateOf(c);            // Check if queue empty only if necessary.            if (rs >= SHUTDOWN &&                ! (rs == SHUTDOWN &&                   firstTask == null &&                   ! workQueue.isEmpty()))                return false;            for (;;) {                int wc = workerCountOf(c);                if (wc >= CAPACITY ||                    wc >= (core ? corePoolSize : maximumPoolSize))                    return false;                if (compareAndIncrementWorkerCount(c))                    break retry;                c = ctl.get();  // Re-read ctl                if (runStateOf(c) != rs)                    continue retry;                // else CAS failed due to workerCount change; retry inner loop            }        }        boolean workerStarted = false;        boolean workerAdded = false;        Worker w = null;        try {            //创立新的线程            w = new Worker(firstTask);            final Thread t = w.thread;            if (t != null) {                final ReentrantLock mainLock = this.mainLock;                mainLock.lock();                try {                    // Recheck while holding lock.                    // Back out on ThreadFactory failure or if                    // shut down before lock acquired.                    int rs = runStateOf(ctl.get());                    if (rs < SHUTDOWN ||                        (rs == SHUTDOWN && firstTask == null)) {                        if (t.isAlive()) // precheck that t is startable                            throw new IllegalThreadStateException();                        //增加新线程到线程池                        workers.add(w);                        int s = workers.size();                        if (s > largestPoolSize)                            largestPoolSize = s;                        workerAdded = true;                    }                } finally {                    mainLock.unlock();                }                if (workerAdded) {                    //执行Worker线程:留神,这里只是执行Worker线程                    t.start();                    workerStarted = true;                }            }        } finally {            if (! workerStarted)                addWorkerFailed(w);        }        return workerStarted;    }

那业务线程到底在哪里执行?

下面的代码,只是执行了Worker线程,然而并没有执行业务线程。那业务线程,到底在哪里执行呢?

在Worker线程里的run办法里执行。

来看代码,这里是Worker线程的run办法

/** Delegates main run loop to outer runWorker  */        public void run() {            //执行业务线程            runWorker(this);        }

外围步骤

  1. 从阻塞队列获取业务线程
  2. 执行业务线程
/**     * 执行业务线程     *      * ---     * Main worker run loop.  Repeatedly gets tasks from queue and     * executes them, while coping with a number of issues:     *     * 1. We may start out with an initial task, in which case we     * don't need to get the first one. Otherwise, as long as pool is     * running, we get tasks from getTask. If it returns null then the     * worker exits due to changed pool state or configuration     * parameters.  Other exits result from exception throws in     * external code, in which case completedAbruptly holds, which     * usually leads processWorkerExit to replace this thread.     *     * 2. Before running any task, the lock is acquired to prevent     * other pool interrupts while the task is executing, and then we     * ensure that unless pool is stopping, this thread does not have     * its interrupt set.     *     * 3. Each task run is preceded by a call to beforeExecute, which     * might throw an exception, in which case we cause thread to die     * (breaking loop with completedAbruptly true) without processing     * the task.     *     * 4. Assuming beforeExecute completes normally, we run the task,     * gathering any of its thrown exceptions to send to afterExecute.     * We separately handle RuntimeException, Error (both of which the     * specs guarantee that we trap) and arbitrary Throwables.     * Because we cannot rethrow Throwables within Runnable.run, we     * wrap them within Errors on the way out (to the thread's     * UncaughtExceptionHandler).  Any thrown exception also     * conservatively causes thread to die.     *     * 5. After task.run completes, we call afterExecute, which may     * also throw an exception, which will also cause thread to     * die. According to JLS Sec 14.20, this exception is the one that     * will be in effect even if task.run throws.     *     * The net effect of the exception mechanics is that afterExecute     * and the thread's UncaughtExceptionHandler have as accurate     * information as we can provide about any problems encountered by     * user code.     *     * @param w the worker     */    final void runWorker(Worker w) {        Thread wt = Thread.currentThread();        Runnable task = w.firstTask;        w.firstTask = null;        w.unlock(); // allow interrupts        boolean completedAbruptly = true;        try {            //从阻塞队列里获取业务线程:精确的说,这里有2种状况,            //1.Worker线程被创立的时候,会持有业务线程,所以Worker线程第一次被执行的时候,是间接获取本人曾经持有的业务线程。执行实现之后,会被置为null,示意曾经被解决。            //2.除了这个业务线程,其余业务线程都是从阻塞队列获取。而且是循环获取,说白了,其实就是有一个中央不停的往阻塞队列写数据(业务线程),相当于生产者;而后,Worker线程这里会不停的生产数据,相当于消费者。典型的生产者消费者模式。            while (task != null || (task = getTask()) != null) {                w.lock();                // If pool is stopping, ensure thread is interrupted;                // if not, ensure thread is not interrupted.  This                // requires a recheck in second case to deal with                // shutdownNow race while clearing interrupt                if ((runStateAtLeast(ctl.get(), STOP) ||                     (Thread.interrupted() &&                      runStateAtLeast(ctl.get(), STOP))) &&                    !wt.isInterrupted())                    wt.interrupt();                try {                    beforeExecute(wt, task);                    Throwable thrown = null;                    try {                        //执行业务线程                        task.run();                    } catch (RuntimeException x) {                        thrown = x; throw x;                    } catch (Error x) {                        thrown = x; throw x;                    } catch (Throwable x) {                        thrown = x; throw new Error(x);                    } finally {                        afterExecute(task, thrown);                    }                } finally {                    task = null;                    w.completedTasks++;                    w.unlock();                }            }            completedAbruptly = false;        } finally {            processWorkerExit(w, completedAbruptly);        }    }

从阻塞队列获取业务线程

/**     * 从阻塞队列里获取业务线程     *     * ---     * Performs blocking or timed wait for a task, depending on     * current configuration settings, or returns null if this worker     * must exit because of any of:     * 1. There are more than maximumPoolSize workers (due to     *    a call to setMaximumPoolSize).     * 2. The pool is stopped.     * 3. The pool is shutdown and the queue is empty.     * 4. This worker timed out waiting for a task, and timed-out     *    workers are subject to termination (that is,     *    {@code allowCoreThreadTimeOut || workerCount > corePoolSize})     *    both before and after the timed wait, and if the queue is     *    non-empty, this worker is not the last thread in the pool.     *     * @return task, or null if the worker must exit, in which case     *         workerCount is decremented     */    private Runnable getTask() {        boolean timedOut = false; // Did the last poll() time out?        for (;;) {            int c = ctl.get();            int rs = runStateOf(c);            // Check if queue empty only if necessary.            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {                decrementWorkerCount();                return null;            }            int wc = workerCountOf(c);            // Are workers subject to culling?            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;            if ((wc > maximumPoolSize || (timed && timedOut))                && (wc > 1 || workQueue.isEmpty())) {                if (compareAndDecrementWorkerCount(c))                    return null;                continue;            }            try {                // 从阻塞队列里获取业务线程                Runnable r = timed ?                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :                    workQueue.take();                if (r != null)                    return r;                timedOut = true;            } catch (InterruptedException retry) {                timedOut = false;            }        }    }

线程池是什么?

下面的步骤有提到增加新线程到线程池,那线程池具体是个什么货色呢?就是个汇合(Set)。

/**     * Set containing all worker threads in pool. Accessed only when     * holding mainLock.     */    private final HashSet<Worker> workers = new HashSet<Worker>(); //线程池:Worker就相当于是线程池里的线程

总结

  1. 线程池就是汇合
  2. 汇合里的元素就是线程

Worker类实现了Runnable。

阻塞队列的数据,从哪里来?

就是当并发申请数量大于最小数量,然而小于阻塞队列容量的时候,就会把数据(即业务线程)写到阻塞队列。

阻塞队列

阻塞队列长这个样子

/**     * The queue used for holding tasks and handing off to worker     * threads.  We do not require that workQueue.poll() returning     * null necessarily means that workQueue.isEmpty(), so rely     * solely on isEmpty to see if the queue is empty (which we must     * do for example when deciding whether to transition from     * SHUTDOWN to TIDYING).  This accommodates special-purpose     * queues such as DelayQueues for which poll() is allowed to     * return null even if it may later return non-null when delays     * expire.     */    private final BlockingQueue<Runnable> workQueue;

其实就是一个阻塞队列数据结构,个别是数组阻塞队列(ArrayBlockingQueue)。

数据元素是业务线程。

外围类-Worker线程

留神,Worker线程也是一个线程,它实现了Runnable接口

其次,它持有了2个外围对象:

  1. 业务线程

创立Worker线程的时候,业务线程也会作为构造方法的入参

  1. 线程池里的线程

新线程是如何创立的?在创立Worker对象的时候,会创立新线程

线程新线程的代码:留神,创立线程构造方法的入参是Worker本人,因为方才Worker把本人(j即this对象)作为入参。

所以,Worker持有的thread就是它本人。所以,上面代码执行thread的时候,就是在执行Worker的run办法。

总结

线程和线程池是最重要的数据,流程的外围,就是围绕线程池和线程池里的线程。

留神,线程池里的线程是工作线程,其实实质就是Worker:Worker的作用就是,一直从阻塞队列生产数据。

还有一个线程是业务线程:业务线程的作用就是咱们本人的业务逻辑。存储业务线程的中央是阻塞队列。阻塞队列的数据生产之后,数据就没了——大白话就是,业务线程属于长期数据,阻塞队列也是长期存储业务线程。实质是因为业务线程的生命周期很短,就是以后申请完结了,业务线程就会被删除。

而,线程池以及线程池里的工作线程,生命周期则比拟久。一个工作线程创立之后,就始终存在,次要作用就是始终不停从阻塞队列生产数据——说白了,其实就是一个工作线程,能够解决多个业务线程。即解决完一个,接着解决下一个。

而且,工作线程并没有偿还的操作。什么意思呢?就是工作线程是一个线程,始终在循环解决业务线程,并没有相似数据库连接池的用完偿还的操作。因为不须要。

所以,线程池的外围步骤

  1. 创立工作线程,增加到工作线程线程池
  2. 执行工作线程,不停的解决业务线程

留神,没有偿还工作线程到工作线程线程池的操作。

既然不须要偿还,那为什么还要线程池呢?因为须要计算工作线程的数量。

小于阻塞队列容量的状况

入口

//申请数量小于阻塞队列容量        if (isRunning(c) && workQueue.offer(command)) { //入阻塞队列            int recheck = ctl.get();            if (! isRunning(recheck) && remove(command))                reject(command);            else if (workerCountOf(recheck) == 0)                addWorker(null, false);

生产者消费者模式

这里是典型的生产者消费者模式,

  1. 在这里会一直的生产数据

实质就是写数据。即把业务线程写到阻塞队列。

  1. Worker线程会一直的生产数据

实质是读数据。即从阻塞队列读业务线程。

数据结构

阻塞队列。

小于最大数量的状况

入口

留神,这里的addWorker办法和后面最小数量是同一个办法。惟一的一点点区别是,第二个入参不一样,第二个入参的作用是用来标记是否是最小数量。

//申请数量小于最大线程数量        else if (!addWorker(command, false))            reject(command);

外围步骤和最小数量齐全一样,都是

  1. 创立新的线程
  2. 增加新线程到线程池
  3. 执行工作线程

参考

https://www.cnblogs.com/vivot...