3 hashCode的底细
tips:面试常问/罕用/常出错
hashCode到底是什么?是不是对象的内存地址?
1) 间接用内存地址?
指标:通过一个Demo验证这个hasCode到底是不是内存地址
public native int hashCode();
com.hashcode.HashCodeTest
package com.hashcode;import org.openjdk.jol.vm.VM;import java.util.ArrayList;import java.util.List;public class HashCodeTest { //指标:只有产生反复,阐明hashcode不是内存地址,但还须要证实(JVM代码证实) public static void main(String[] args) { List<Integer> integerList = new ArrayList<Integer>(); int num = 0; for (int i = 0; i < 150000; i++) { //创立新的对象 Object object = new Object(); if (integerList.contains(object.hashCode())) { num++;//产生反复(内存地址必定不会反复) } else { integerList.add(object.hashCode());//没有反复 } } System.out.println(num + "个hashcode产生反复"); System.out.println("List共计大小" + integerList.size() + "个"); }}
15万个循环,产生了反复,阐明hashCode不是内存地址(严格的说,必定不是间接取的内存地址)
思考一下,为什么不能间接用内存地址呢?
- 提醒:jvm垃圾收集算法,对象迁徙……
那么它到底是什么?如何生成的呢
2) 不是地址那在哪里?
既然不是内存地址,那肯定在某个中央存着,那在哪里存着呢?
答案:在对象头里!(画图。类在jvm内存中的布局)
对象头分为两局部,一部分是下面指向class形容的地址Klass,另一部分就是Markword
而咱们这里要找的hashcode在Markword里!(标记位意义,不必记!)
32位:
64位:
3) 什么时候生成的?
new的霎时就有hashcode了吗??
show me the code!咱们用代码验证
package com.hashcode;import org.openjdk.jol.info.ClassLayout;import org.openjdk.jol.vm.VM;public class ShowHashCode { public static void main(String[] args) { ShowHashCode a = new ShowHashCode(); //jvm的信息 System.out.println(VM.current().details()); System.out.println("-------------------------"); //调用之前打印a对象的头信息 //以表格的模式打印对象布局 System.out.println(ClassLayout.parseInstance(a).toPrintable()); System.out.println("-------------------------"); //调用后再打印a对象的hashcode值 System.out.println(Integer.toHexString(a.hashCode())); System.out.println(ClassLayout.parseInstance(a).toPrintable()); System.out.println("-------------------------"); //有线程加重量级锁的时候,再来看对象头 new Thread(()->{ try { synchronized (a){ Thread.sleep(5000); } } catch (InterruptedException e) { e.printStackTrace(); } }).start(); System.out.println(Integer.toHexString(a.hashCode())); System.out.println(ClassLayout.parseInstance(a).toPrintable()); }}
后果剖析
论断:在你没有调用的时候,这个值是空的,当第一次调用hashCode办法时,会生成,加锁当前,不晓得去哪里了……
4) 怎么生成的?
接上文 , 咱们查究一下,它具体的生成及挪动过程。
咱们都晓得,这货是个本地办法
public native int hashCode();
那就须要借助下面提到的方法,通过JVM虚拟机源码,查看hashcode的生成
1)先从Object.c开始找hashCode映射
src\share\native\java\lang\Object.c
JNIEXPORT void JNICALL//jni调用//全门路:java_lang_Object_registerNatives是java对应的包下办法Java_java_lang_Object_registerNatives(JNIEnv *env, jclass cls){ //jni环境调用;上面的参数methods对应的java办法 (*env)->RegisterNatives(env, cls, methods, sizeof(methods)/sizeof(methods[0]));}
JAVA--------------------->C++函数对应
//JAVA办法(返回值)----->C++函数对象static JNINativeMethod methods[] = { //JAVA办法 返回值 (参数) c++函数 {"hashCode", "()I", (void *)&JVM_IHashCode}, {"wait", "(J)V", (void *)&JVM_MonitorWait}, {"notify", "()V", (void *)&JVM_MonitorNotify}, {"notifyAll", "()V", (void *)&JVM_MonitorNotifyAll}, {"clone", "()Ljava/lang/Object;", (void *)&JVM_Clone},};
JVM_IHashCod在哪里呢?
2)全局检索JVM_IHashCode
齐全搜不到这个办法名,只有这个还对付有点像,那这是个啥呢?
src\share\vm\prims\jvm.cpp
/*JVM_ENTRY is a preprocessor macro thatadds some boilerplate code that is common for all functions of HotSpot JVM API.This API is a connection layer between the native code of JDK class library and the JVM.JVM_ENTRY是一个预加载宏,减少一些样板代码到jvm的所有function中这个api是位于本地办法与jdk之间的一个连贯层。所以,此处才是生成hashCode的逻辑!*/JVM_ENTRY(jint, JVM_IHashCode(JNIEnv* env, jobject handle)) JVMWrapper("JVM_IHashCode"); //调用了ObjectSynchronizer对象的FastHashCode return handle == NULL ? 0 : ObjectSynchronizer::FastHashCode (THREAD, JNIHandles::resolve_non_null(handle)) ;JVM_END
3)持续,ObjectSynchronizer::FastHashCode
先说生成流程,留个印象:
intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) { //是否开启了偏差锁(Biased:偏差,偏向) if (UseBiasedLocking) { //如果以后对象处于偏差锁状态 if (obj->mark()->has_bias_pattern()) { Handle hobj (Self, obj) ; assert (Universe::verify_in_progress() || !SafepointSynchronize::is_at_safepoint(), "biases should not be seen by VM thread here"); //那么就撤销偏差锁(达到无锁状态,revoke:破除) BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current()); obj = hobj() ; //断言下,看看是否撤销胜利(撤销后为无锁状态) assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now"); } } // …… ObjectMonitor* monitor = NULL; markOop temp, test; intptr_t hash; //读出一个稳固的mark;避免对象obj处于收缩状态; //如果正在收缩,就等他收缩结束再读出来 markOop mark = ReadStableMark (obj); //是否撤销了偏差锁(也就是无锁状态)(neutral:中立,不偏不斜的) if (mark->is_neutral()) { //从mark头上取hash值 hash = mark->hash(); //如果有,间接返回这个hashcode(xor) if (hash) { // if it has hash, just return it return hash; } //如果没有就新生成一个(get_next_hash) hash = get_next_hash(Self, obj); // allocate a new hash code //生成后,原子性设置,将hash放在对象头里去,这样下次就能够间接取了 temp = mark->copy_set_hash(hash); // merge the hash code into header // use (machine word version) atomic operation to install the hash test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark); if (test == mark) { return hash; } // If atomic operation failed, we must inflate the header // into heavy weight monitor. We could add more code here // for fast path, but it does not worth the complexity. //如果曾经升级成了重量级锁,那么找到它的monitor //也就是咱们所说的内置锁(objectMonitor),这是c里的数据类型 //因为锁降级后,mark里的bit位曾经不再存储hashcode,而是指向monitor的地址 //而降级的markword呢?被移到了c的monitor里 } else if (mark->has_monitor()) { //沿着monitor找header,也就是对象头 monitor = mark->monitor(); temp = monitor->header(); assert (temp->is_neutral(), "invariant") ; //找到header后取hash返回 hash = temp->hash(); if (hash) { return hash; } // Skip to the following code to reduce code size } else if (Self->is_lock_owned((address)mark->locker())) { //轻量级锁的话,也是从java对象头移到了c里,叫helper temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned assert (temp->is_neutral(), "invariant") ; hash = temp->hash(); // by current thread, check if the displaced //找到,返回 if (hash) { // header contains hash code return hash; } } ......略
问:
为什么要先撤销偏差锁到无锁状态,再来生成hashcode呢?这跟锁有什么关系?
答:
mark word里,hashcode存储的字节地位被偏差锁给占了!偏差锁存储了锁持有者的线程id
(参考下面的markword图)
扩大:对于hashCode的生成算法(理解)
// hashCode() generation :// 波及到c++算法畛域,感兴趣的同学自行钻研// Possibilities:// * MD5Digest of {obj,stwRandom}// * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.// * A DES- or AES-style SBox[] mechanism// * One of the Phi-based schemes, such as:// 2654435761 = 2^32 * Phi (golden ratio)// HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;// * A variation of Marsaglia's shift-xor RNG scheme.// * (obj ^ stwRandom) is appealing, but can result// in undesirable regularity in the hashCode values of adjacent objects// (objects allocated back-to-back, in particular). This could potentially// result in hashtable collisions and reduced hashtable efficiency.// There are simple ways to "diffuse" the middle address bits over the// generated hashCode values://static inline intptr_t get_next_hash(Thread * Self, oop obj) { intptr_t value = 0 ; if (hashCode == 0) { // This form uses an unguarded global Park-Miller RNG, // so it's possible for two threads to race and generate the same RNG. // On MP system we'll have lots of RW access to a global, so the // mechanism induces lots of coherency traffic. value = os::random() ;//返回随机数 } else if (hashCode == 1) { // This variation has the property of being stable (idempotent) // between STW operations. This can be useful in some of the 1-0 // synchronization schemes. //和地址相干,但不是地址;右移+异或算法 intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3 ; value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;//随机数位移异或计算 } else if (hashCode == 2) { value = 1 ; // 返回1 } else if (hashCode == 3) { value = ++GVars.hcSequence ;//返回一个Sequence序列号 } else if (hashCode == 4) { value = cast_from_oop<intptr_t>(obj) ;//也不是地址 } else { //罕用 // Marsaglia's xor-shift scheme with thread-specific state // This is probably the best overall implementation -- we'll // likely make this the default in future releases. //马萨利亚传授写的xor-shift 随机数算法(异或随机算法) unsigned t = Self->_hashStateX ; t ^= (t << 11) ; Self->_hashStateX = Self->_hashStateY ; Self->_hashStateY = Self->_hashStateZ ; Self->_hashStateZ = Self->_hashStateW ; unsigned v = Self->_hashStateW ; v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ; Self->_hashStateW = v ; value = v ; }
5)总结
通过剖析虚拟机源码咱们证实了hashCode不是间接用的内存地址,而是采取肯定的算法来生成
hashcode值的存储在mark word里,与锁共用一段bit位,这就造成了跟锁状态相关性
- 如果是偏差锁:
一旦调用hashcode,偏差锁将被撤销,hashcode被保留占位mark word,对象被打回无锁状态
- 那偏偏这会就是有线程硬性应用对象的锁呢?
对象再也回不到偏差锁状态而是降级为重量级锁。hash code追随mark word被挪动到c的object monitor,从那里取
本文由传智教育博学谷 - 狂野架构师教研团队公布,转载请注明出处!
如果本文对您有帮忙,欢送关注和点赞;如果您有任何倡议也可留言评论或私信,您的反对是我保持创作的能源