ClickHouse 源码泛读

前言

首先从最整体的视角看下ClickHouse的解决流程:

入口函数
TCP/HTTP/RPCHandler::runImpl

  • 构建pipeline
    state.io = executeQuery()
  • 调度执行pipeline, reply to client
if(state.io.pipeline.pushing()) {  processInsertQuery();} else if (state.io.pipeline.pulling()) {  processOrdinaryQueryWithProcessors();} else if ... {  ...}

整体分为两大块:

  • 解析sql,构建pipeline。
  • 而后依据pipeline的特点(insert or other)抉择对应的调度器执行pipeline,拿到后果返回给客户端。
    对于第二局部能够参考我之前写的文章:ClickHouse之Pipeline执行引擎,这篇文章次要剖析第一局部。

executeQuery

地位:src/Interpreters/executeQuery.cpp 1073

转发到executeQueryImpl。

executeQueryImpl

地位:src/Interpreters/executeQuery.cpp 358

解析SQL,并依据sql类型结构对应的Interpreter,调用Interpreter的execute()函数,取得pipeline,本文以Select语句为例进行剖析。

InterpreterSelectQuery::execute

地位:src/Interpreters/InterpreterSelectQuery.cpp 684

  • 结构QueryPlan
  • 依据QueryPlan结构QueryPipelineBuilder
  • 依据builder结构pipeline

其中第二局部和第三局部的逻辑比较简单,本文暂且略过不表,重点剖析第一局部。

InterpreterSelectQuery::buildQueryPlan

地位:src/Interpreters/InterpreterSelectQuery.cpp 656

次要工作转发到executeImpl

InterpreterSelectQuery::executeImpl

地位:src/Interpreters/InterpreterSelectQuery.cpp 1105

/// Read the data from Storage. from_stage - to what stage the request was completed in Storage.executeFetchColumns(from_stage, query_plan);/// 依据解析后的ast以及其余信息向query_plan中一直增加各种类型的QueryPlanStep,注:QueryPlan实际上是一个树状构造,树节点类型为QueryPlanStep。

这里将executeFetchColumns独自列出来,因为这里波及到构建从存储引擎读取数据的QueryPlanStep,本文着重剖析这里。

InterpreterSelectQuery::executeFetchColumns

地位:src/Interpreters/InterpreterSelectQuery.cpp 1926

函数前半部分设计很多优化相干以及各种参数的获取,在刚开始浏览源码的时候这些内容能够暂且跳过,首先梳理分明整个我的项目的枝干,由粗到细缓缓剖析,否则很容易迷失在繁冗的细节中。关注2159行这里:

storage->read(query_plan, required_columns, storage_snapshot, query_info, context, processing_stage, max_block_size, max_streams);

StorageMergeTree::read

地位:src/Storages/StorageMergeTree.cpp 215

关注这里:

if (auto plan = reader.read(column_names, storage_snapshot, query_info, local_context, max_block_size, num_streams, processed_stage, nullptr, enable_parallel_reading))    query_plan = std::move(*plan);

MergeTreeDataSelectExecutor::read

地位:src/Storages/MergeTree/MergeTreeDataSelectExecutor.cpp 135

这里对于查问是否应用projection进行分状况解决,咱们暂且关注不应用projection的分支。

MergeTreeDataSelectExecutor::readFromParts

地位:src/Storages/MergeTree/MergeTreeDataSelectExecutor.cpp 1282

关注这部分代码:

    auto read_from_merge_tree = std::make_unique<ReadFromMergeTree>(        std::move(parts),        real_column_names,        virt_column_names,        data,        query_info,        storage_snapshot,        context,        max_block_size,        num_streams,        sample_factor_column_queried,        max_block_numbers_to_read,        log,        merge_tree_select_result_ptr,        enable_parallel_reading    );    QueryPlanPtr plan = std::make_unique<QueryPlan>();    plan->addStep(std::move(read_from_merge_tree));    return plan;

剖析到这里可知,在结构QueryPlan阶段咱们实际上只往QueryPlan中增加了一个QueryPlanStep,它的类型是ReadFromMergeTree,读者能够看下这个类的继承关系验证,它的确是QueryPlanStep子类型。接下来的重点就是剖析ReadFromMergeTree这个类型。

在剖析之前咱们有必要晓得以下信息:
在 依据QueryPlan结构QueryPipelineBuilder阶段,咱们实际上依赖于QueryPlanStep的虚函数:

/// Add processors from current step to QueryPipeline./// Calling this method, we assume and don't check that:///   * pipelines.size() == getInputStreams.size()///   * header from each pipeline is the same as header from corresponding input_streams/// Result pipeline must contain any number of streams with compatible output header is hasOutputStream(),///   or pipeline should be completed otherwise.virtual QueryPipelineBuilderPtr updatePipeline(QueryPipelineBuilders pipelines, const BuildQueryPipelineSettings & settings) = 0;

然而咱们发现ReadFromMergeTree并没有重写这个函数,起因如下:
ReadFromMergeTree的继承链为 ReadFromMergeTree -> ISourceStep -> QueryPlanStep。
在ISourceStep中曾经重写了这个函数,因而咱们只须要关注initializePipeline这个虚函数即可。

QueryPipelineBuilderPtr ISourceStep::updatePipeline(QueryPipelineBuilders, const BuildQueryPipelineSettings & settings){    auto pipeline = std::make_unique<QueryPipelineBuilder>();    QueryPipelineProcessorsCollector collector(*pipeline, this);    initializePipeline(*pipeline, settings);    auto added_processors = collector.detachProcessors();    processors.insert(processors.end(), added_processors.begin(), added_processors.end());    return pipeline;}

ReadFromMergeTree::initializePipeline

关注:

auto result = getAnalysisResult();...pipe = spreadMarkRangesAmongStreams(    std::move(result.parts_with_ranges),    column_names_to_read);...pipeline.init(std::move(pipe));

能够看到,咱们是通过一个pipe初始化了pipeline(type : QueryPipelineBuilder),而后在ISourceStep::updatePipeline中返回并参加构建pipeline,因而咱们的重点转移到了如何构建这个pipe。注:对于QueryPipelineBuilder和Pipe的关系,大家能够跳转看看,其实只是一层很浅的封装。

ReadFromMergeTree::spreadMarkRangesAmongStreams

地位:src/Processors/QueryPlan/ReadFromMergeTree.cpp 375

转发到read函数

ReadFromMergeTree::read

地位:src/Processors/QueryPlan/ReadFromMergeTree.cpp 287
代码如下:

Pipe ReadFromMergeTree::read(    RangesInDataParts parts_with_range, Names required_columns, ReadType read_type,    size_t max_streams, size_t min_marks_for_concurrent_read, bool use_uncompressed_cache){    if (read_type == ReadType::Default && max_streams > 1)        return readFromPool(parts_with_range, required_columns, max_streams,                            min_marks_for_concurrent_read, use_uncompressed_cache);    auto pipe = readInOrder(parts_with_range, required_columns, read_type, use_uncompressed_cache, 0);    /// Use ConcatProcessor to concat sources together.    /// It is needed to read in parts order (and so in PK order) if single thread is used.    if (read_type == ReadType::Default && pipe.numOutputPorts() > 1)        pipe.addTransform(std::make_shared<ConcatProcessor>(pipe.getHeader(), pipe.numOutputPorts()));    return pipe;}

如果max_streams > 1,则转发到readFromPool,并且在pipe中增加一个ConcatProcessor,将多个source合并为一个。否则转发到readInOrder。

todo

整个零碎的链路切实太长了,前面的内容有工夫再剖析吧,之后的内容能够看下这篇文章。