前提

最近公司在做有需要在做分布式限流,调研的限流框架大略有

1、spring cloud gateway集成redis限流,但属于网关层限流

2、阿里Sentinel,功能强大、带监控平台

3、srping cloud hystrix,属于接口层限流,提供线程池与信号量两种形式

4、其余:redission、手撸代码

理论需要状况属于业务端限流,redission更加不便,应用更加灵便,上面介绍下redission分布式限流如何应用及原理:

一、应用

应用很简略、如下

// 1、 申明一个限流器RRateLimiter rateLimiter = redissonClient.getRateLimiter(key); // 2、 设置速率,5秒中产生3个令牌rateLimiter.trySetRate(RateType.OVERALL, 3, 5, RateIntervalUnit.SECONDS); // 3、试图获取一个令牌,获取到返回truerateLimiter.tryAcquire(1)

二、原理

1、getRateLimiter

// 申明一个限流器 名称 叫keyredissonClient.getRateLimiter(key)

2、trySetRate

trySetRate办法跟进去底层实现如下:@Overridepublic RFuture<Boolean> trySetRateAsync(RateType type, long rate, long rateInterval, RateIntervalUnit unit) {    return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,            "redis.call('hsetnx', KEYS[1], 'rate', ARGV[1]);"          + "redis.call('hsetnx', KEYS[1], 'interval', ARGV[2]);"          + "return redis.call('hsetnx', KEYS[1], 'type', ARGV[3]);",            Collections.<Object>singletonList(getName()), rate, unit.toMillis(rateInterval), type.ordinal());}

举个例子,更容易了解:

比方上面这段代码,5秒钟产生3个令牌,并且所有实例共享(RateType.OVERALL所有实例共享、RateType.CLIENT单实例端共享)

trySetRate(RateType.OVERALL, 3, 5, RateIntervalUnit.SECONDS);

那么redis中就会设置3个参数:

hsetnx,key,rate,3hsetnx,key,interval,5hsetnx,key,type,0

接着看tryAcquire(1)办法:底层源码如下

private <T> RFuture<T> tryAcquireAsync(RedisCommand<T> command, Long value) {    return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, command,            "local rate = redis.call('hget', KEYS[1], 'rate');"  //1          + "local interval = redis.call('hget', KEYS[1], 'interval');"  //2          + "local type = redis.call('hget', KEYS[1], 'type');" //3          + "assert(rate ~= false and interval ~= false and type ~= false, 'RateLimiter is not initialized')" //4                    + "local valueName = KEYS[2];" //5          + "if type == 1 then "              + "valueName = KEYS[3];" //6          + "end;"                    + "local currentValue = redis.call('get', valueName); " //7          + "if currentValue ~= false then "                  + "if tonumber(currentValue) < tonumber(ARGV[1]) then " //8                     + "return redis.call('pttl', valueName); "                 + "else "                     + "redis.call('decrby', valueName, ARGV[1]); " //9                     + "return nil; "                 + "end; "          + "else " //10                 + "redis.call('set', valueName, rate, 'px', interval); "                  + "redis.call('decrby', valueName, ARGV[1]); "                 + "return nil; "          + "end;",            Arrays.<Object>asList(getName(), getValueName(), getClientValueName()),             value, commandExecutor.getConnectionManager().getId().toString());}

第1、2、3备注行是获取上一步set的3个值:rate、interval、type,如果这3个值没有设置,间接返回rateLimiter没有被初始化。

第5备注行申明一个变量叫valueName 值为KEYS[2],KEYS[2]对应的值是getValueName()办法,getValueName()返回的就是下面第一步getRateLimiter咱们设置的key;如果type=1,示意全局共享,那么valueName 的值改为取KEYS[3],KEYS[3]对应的值为getClientValueName(),查看getClientValueName()源码:

String getClientValueName() {        return suffixName(getValueName(), commandExecutor.getConnectionManager().getId().toString());   }

ConnectionManager().getId()如下:

public interface ConnectionManager {        UUID getId();     省略...}

这个getId()是每个客户端初始化的时候生成的UUID,即每个客户端的getId是惟一的,这也就验证了trySetRate办法中RateType.ALL与RateType.PER_CLIENT的作用。

  • 接着看第7规范行,获取valueName对应的值currentValue;首次获取必定为空,那么看第10规范行else的逻辑
  • set valueName 3 px 5,设置key=valueName value=3 过期工夫为5秒
  • decrby valueName 1,将下面valueName的值减1
  • 那么如果第二次拜访,第7标注行返回的值存在,将会走第8标注行,紧接着走如下判断
  • 如果以后valueName的值也就是3,小于要取得的令牌数量(tryAcquire办法中的入参),那么阐明以后工夫内(key的有效期5秒内),令牌的数量曾经被用完,返回pttl(key的残余过期工夫);反之阐明桶中有足够的令牌,获取之后将会把桶中的令牌数量减1,至此完结。

总结

redission分布式限流采纳令牌桶思维和固定工夫窗口,trySetRate办法设置桶的大小,利用redis key过期机制达到工夫窗口目标,管制固定工夫窗口内容许通过的申请量。