贪心搜寻是在每个工夫步中抉择概率最高的单词,也是咱们最罕用的一种办法,Beam Search不取每个标记自身的相对概率,而是思考每个标记的所有可能扩大。而后依据其对数概率抉择最合适的标记序列。
例如令牌的概率如下所示:
例如,Pancakes + looks时间段1的概率等效于:
Pancakes looks so = log(0.2) + log(0.7)= -1.9Pancakes looks fluffy = log(0.2) + log(0.3)= -2.8
所以咱们须要定义一个函数来实现整句的概率计算:
import torch.nn.functional as Fdef log_probability_single(logits, labels): logp = F.log_softmax(logits, dim=-1) logp_label = torch.gather(logp, 2, labels.unsqueeze(2)).squeeze(-1) return logp_labeldef sentence_logprob(model, labels, input_len=0): with torch.no_grad(): result = model(labels) log_probability = log_probability_single(result.logits[:, :-1, :], labels[:, 1:]) sentence_log_prob = torch.sum(log_probability[:, input_len:]) return sentence_log_prob.cpu().numpy()
接下来,能够将其利用于贪心搜寻解码办法生成的输入,并计算生成的序列的对数概率。
在此示例中,我将在村上春木的书中简要介绍:1Q84。
input_sentence = "A love story, a mystery, a fantasy, a novel of self-discovery, a dystopia to rival George Orwell’s — 1Q84 is Haruki Murakami’s most ambitious undertaking yet: an instant best seller in his native Japan, and a tremendous feat of imagination from one of our most revered contemporary writers."max_sequence = 100input_ids = tokenizer(input_sentence, return_tensors='pt')['input_ids'].to(device)output = model.generate(input_ids, max_length=max_sequence, do_sample=False)greedy_search_output = sentence_logprob(model, output, input_len=len(input_ids[0]))print(tokenizer.decode(output[0]))
咱们能够看到生成的序列的对数概率为-52.31。
当初,咱们将并比拟通过Beam Search生成的序列的对数概率得分,得分越高潜在后果越好。
咱们能够减少n-gram惩办参数no_repeat_ngram_size,这有助于缩小输入中的反复生成的序列。
beam_search_output = model.generate(input_ids, max_length=max_sequence, num_beams=5, do_sample=False, no_repeat_ngram_size=2)beam_search_log_prob = sentence_logprob(model, beam_search_output, input_len=len(input_ids[0]))print(tokenizer.decode(beam_search_output[0]))print(f"\nlog_prob: {beam_search_log_prob:.2f}")
输入如下:
分时和连贯性要比贪心的办法好很多,对吧。
https://avoid.overfit.cn/post/ba2eb47bb35d43d99fb58333d37f13cb
作者:Jason LZP