原文链接

1.程序解说

(1)香草编码器

在这种自编码器的最简略构造中,只有三个网络层,即只有一个暗藏层的神经网络。它的输出和输入是雷同的,可通过应用Adam优化器和均方误差损失函数,来学习如何重构输出。

在这里,如果隐含层维数(64)小于输出维数(784),则称这个编码器是有损的。通过这个束缚,来迫使神经网络来学习数据的压缩表征。

input_size = 784hidden_size = 64output_size = 784x = Input(shape=(input_size,))# Encoderh = Dense(hidden_size, activation='relu')(x)# Decoderr = Dense(output_size, activation='sigmoid')(h)autoencoder = Model(input=x, output=r)autoencoder.compile(optimizer='adam', loss='mse')

Dense:Keras Dense层,keras.layers.core.Dense( units, activation=None)

units, #代表该层的输入维度

activation=None, #激活函数.然而默认 liner

Activation:激活层对一个层的输入施加激活函数

model.compile() :Model模型办法之一:compile

optimizer:优化器,为预约义优化器名或优化器对象,参考优化器

loss:损失函数,为预约义损失函数名或一个指标函数,参考损失函数

adam:adaptive moment estimation,是对RMSProp优化器的更新。利用梯度的一阶矩预计和二阶矩预计动静调整每个参数的学习率。长处:每一次迭代学习率都有一个明确的范畴,使得参数变动很安稳。

mse:mean_squared_error,均方误差

(2)多层自编码器

如果一个隐含层还不够,显然能够将主动编码器的隐含层数目进一步提高。

在这里,实现中应用了3个隐含层,而不是只有一个。任意一个隐含层都能够作为特色表征,然而为了使网络对称,咱们应用了最两头的网络层。

input_size = 784hidden_size = 128code_size = 64x = Input(shape=(input_size,))# Encoderhidden_1 = Dense(hidden_size, activation='relu')(x)h = Dense(code_size, activation='relu')(hidden_1)# Decoderhidden_2 = Dense(hidden_size, activation='relu')(h)r = Dense(input_size, activation='sigmoid')(hidden_2)autoencoder = Model(input=x, output=r)autoencoder.compile(optimizer='adam', loss='mse')

(3)卷积自编码器

除了全连贯层,自编码器也能利用到卷积层,原理是一样的,然而要应用3D矢量(如图像)而不是展平后的一维矢量。对输出图像进行下采样,以提供较小维度的潜在表征,来迫使自编码器从压缩后的数据进行学习。

x = Input(shape=(28, 28,1)) # Encoderconv1_1 = Conv2D(16, (3, 3), activation='relu', padding='same')(x)pool1 = MaxPooling2D((2, 2), padding='same')(conv1_1)conv1_2 = Conv2D(8, (3, 3), activation='relu', padding='same')(pool1)pool2 = MaxPooling2D((2, 2), padding='same')(conv1_2)conv1_3 = Conv2D(8, (3, 3), activation='relu', padding='same')(pool2)h = MaxPooling2D((2, 2), padding='same')(conv1_3)# Decoderconv2_1 = Conv2D(8, (3, 3), activation='relu', padding='same')(h)up1 = UpSampling2D((2, 2))(conv2_1)conv2_2 = Conv2D(8, (3, 3), activation='relu', padding='same')(up1)up2 = UpSampling2D((2, 2))(conv2_2)conv2_3 = Conv2D(16, (3, 3), activation='relu')(up2)up3 = UpSampling2D((2, 2))(conv2_3)r = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(up3)autoencoder = Model(input=x, output=r)autoencoder.compile(optimizer='adam', loss='mse')

conv2d:Conv2D(filters, kernel_size, strides=(1, 1), padding='valid')

filters:卷积核的数目(即输入的维度)。

kernel_size:卷积核的宽度和长度,单个整数或由两个整数形成的list/tuple。如为单个整数,则示意在各个空间维度的雷同长度。

strides:卷积的步长,单个整数或由两个整数形成的list/tuple。如为单个整数,则示意在各个空间维度的雷同步长。任何不为1的strides均与任何不为1的dilation_rate均不兼容。

padding:补0策略,有“valid”, “same” 两种。“valid”代表只进行无效的卷积,即对边界数据不解决。“same”代表保留边界处的卷积后果,通常会导致输入shape与输出shape雷同。

MaxPooling2D:2D输出的最大池化层。MaxPooling2D(pool_size=(2, 2), strides=None, border_mode='valid')

pool_size:pool_size:长为2的整数tuple,代表在两个方向(竖直,程度)上的下采样因子,如取(2,2)将使图片在两个维度上均变为原长的一半。
strides:长为2的整数tuple,或者None,步长值。
padding:字符串,“valid”或者”same”。

UpSampling2D:上采样。UpSampling2D(size=(2, 2))

size:整数tuple,别离为行和列上采样因子。

(4)正则自编码器

除了施加一个比输出维度小的隐含层,一些其余办法也可用来束缚自编码器重构,如正则自编码器。

正则自编码器不须要应用浅层的编码器和解码器以及小的编码维数来限度模型容量,而是应用损失函数来激励模型学习其余个性(除了将输出复制到输入)。这些个性包含稠密表征、小导数表征、以及对噪声或输出缺失的鲁棒性。

即便模型容量大到足以学习一个无意义的恒等函数,非线性且过齐备的正则自编码器依然可能从数据中学到一些对于数据分布的有用信息。

在理论利用中,罕用到两种正则自编码器,别离是稠密自编码器降噪自编码器

(5)稠密自编码器

个别用来学习特色,以便用于像分类这样的工作。稠密正则化的自编码器必须反映训练数据集的独特统计特色,而不是简略地充当恒等函数。以这种形式训练,执行附带稠密惩办的复现工作能够失去能学习有用特色的模型。

还有一种用来束缚主动编码器重构的办法,是对其损失函数施加束缚。比方,可对损失函数增加一个正则化束缚,这样能使自编码器学习到数据的稠密表征。

要留神,在隐含层中,咱们还退出了L1正则化,作为优化阶段中损失函数的惩办项。与香草自编码器相比,这样操作后的数据表征更为稠密。

input_size = 784hidden_size = 64output_size = 784x = Input(shape=(input_size,))# Encoderh = Dense(hidden_size, activation='relu', activity_regularizer=regularizers.l1(10e-5))(x)#施加在输入上的L1正则项# Decoderr = Dense(output_size, activation='sigmoid')(h)autoencoder = Model(input=x, output=r)autoencoder.compile(optimizer='adam', loss='mse')

activity_regularizer:施加在输入上的正则项,为ActivityRegularizer对象

l1(l=0.01):L1正则项,正则项通常用于对模型的训练施加某种束缚,L1正则项即L1范数束缚,该束缚会使被约束矩阵/向量更稠密。

(6)降噪自编码器

这里不是通过对损失函数施加惩办项,而是通过扭转损失函数的重构误差项来学习一些有用信息

向训练数据退出噪声,并使自编码器学会去除这种噪声来取得没有被噪声污染过的实在输出。因而,这就迫使编码器学习提取最重要的特色并学习输出数据中更加鲁棒的表征,这也是它的泛化能力比个别编码器强的起因。

这种构造能够通过梯度降落算法来训练。

x = Input(shape=(28, 28, 1))# Encoderconv1_1 = Conv2D(32, (3, 3), activation='relu', padding='same')(x)pool1 = MaxPooling2D((2, 2), padding='same')(conv1_1)conv1_2 = Conv2D(32, (3, 3), activation='relu', padding='same')(pool1)h = MaxPooling2D((2, 2), padding='same')(conv1_2)# Decoderconv2_1 = Conv2D(32, (3, 3), activation='relu', padding='same')(h)up1 = UpSampling2D((2, 2))(conv2_1)conv2_2 = Conv2D(32, (3, 3), activation='relu', padding='same')(up1)up2 = UpSampling2D((2, 2))(conv2_2)r = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(up2)autoencoder = Model(input=x, output=r)autoencoder.compile(optimizer='adam', loss='mse')

2.程序实例:

(1)单层自编码器

from keras.layers import Input, Densefrom keras.models import Modelfrom keras.datasets import mnistimport numpy as npimport matplotlib.pyplot as plt (x_train, _), (x_test, _) = mnist.load_data()x_train = x_train.astype('float32') / 255.x_test = x_test.astype('float32') / 255.x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))print(x_train.shape)print(x_test.shape)  #单层自编码器encoding_dim = 32input_img = Input(shape=(784,)) encoded = Dense(encoding_dim, activation='relu')(input_img)decoded = Dense(784, activation='sigmoid')(encoded) autoencoder = Model(inputs=input_img, outputs=decoded)encoder = Model(inputs=input_img, outputs=encoded) encoded_input = Input(shape=(encoding_dim,))decoder_layer = autoencoder.layers[-1] decoder = Model(inputs=encoded_input, outputs=decoder_layer(encoded_input)) autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy') autoencoder.fit(x_train, x_train, epochs=50, batch_size=256,                 shuffle=True, validation_data=(x_test, x_test)) encoded_imgs = encoder.predict(x_test)decoded_imgs = decoder.predict(encoded_imgs)  #输入图像n = 10  # how many digits we will displayplt.figure(figsize=(20, 4))for i in range(n):    ax = plt.subplot(2, n, i + 1)    plt.imshow(x_test[i].reshape(28, 28))    plt.gray()    ax.get_xaxis().set_visible(False)    ax.get_yaxis().set_visible(False)     ax = plt.subplot(2, n, i + 1 + n)    plt.imshow(decoded_imgs[i].reshape(28, 28))    plt.gray()    ax.get_xaxis().set_visible(False)    ax.get_yaxis().set_visible(False)plt.show()

(2)卷积自编码器

from keras.layers import Input, Convolution2D, MaxPooling2D, UpSampling2Dfrom keras.models import Modelfrom keras.datasets import mnistimport numpy as npimport matplotlib.pyplot as pltfrom keras.callbacks import TensorBoard(x_train, _), (x_test, _) = mnist.load_data()x_train = x_train.astype('float32') / 255.x_test = x_test.astype('float32') / 255.x_train = np.reshape(x_train, (len(x_train), 28, 28, 1))x_test = np.reshape(x_test, (len(x_test), 28, 28, 1))noise_factor = 0.5x_train_noisy = x_train + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_train.shape) x_test_noisy = x_test + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_test.shape) x_train_noisy = np.clip(x_train_noisy, 0., 1.)x_test_noisy = np.clip(x_test_noisy, 0., 1.)print(x_train.shape)print(x_test.shape)#卷积自编码器input_img = Input(shape=(28, 28, 1)) x = Convolution2D(16, (3, 3), activation='relu', padding='same')(input_img)x = MaxPooling2D((2, 2), padding='same')(x)x = Convolution2D(8, (3, 3), activation='relu', padding='same')(x)x = MaxPooling2D((2, 2), padding='same')(x)x = Convolution2D(8, (3, 3), activation='relu', padding='same')(x)encoded = MaxPooling2D((2, 2), padding='same')(x) x = Convolution2D(8, (3, 3), activation='relu', padding='same')(encoded)x = UpSampling2D((2, 2))(x)x = Convolution2D(8, (3, 3), activation='relu', padding='same')(x)x = UpSampling2D((2, 2))(x)x = Convolution2D(16, (3, 3), activation='relu')(x)x = UpSampling2D((2, 2))(x)decoded = Convolution2D(1, (3, 3), activation='sigmoid', padding='same')(x) autoencoder = Model(inputs=input_img, outputs=decoded)autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy') # 关上一个终端并启动TensorBoard,终端中输出 tensorboard --logdir=/autoencoderautoencoder.fit(x_train, x_train, epochs=50, batch_size=256,                shuffle=True, validation_data=(x_test, x_test),                callbacks=[TensorBoard(log_dir='autoencoder')]) decoded_imgs = autoencoder.predict(x_test)#输入图像n = 10  # how many digits we will displayplt.figure(figsize=(20, 4))for i in range(n):    ax = plt.subplot(2, n, i + 1)    plt.imshow(x_test[i].reshape(28, 28))    plt.gray()    ax.get_xaxis().set_visible(False)    ax.get_yaxis().set_visible(False)     ax = plt.subplot(2, n, i + 1 + n)    plt.imshow(decoded_imgs[i].reshape(28, 28))    plt.gray()    ax.get_xaxis().set_visible(False)    ax.get_yaxis().set_visible(False)plt.show()

(3)深度自编码器

from keras.layers import Input, Densefrom keras.models import Modelfrom keras.datasets import mnistimport numpy as npimport matplotlib.pyplot as plt(x_train, _), (x_test, _) = mnist.load_data()x_train = x_train.astype('float32') / 255.x_test = x_test.astype('float32') / 255.x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))print(x_train.shape)print(x_test.shape)#深度自编码器input_img = Input(shape=(784,))encoded = Dense(128, activation='relu')(input_img)encoded = Dense(64, activation='relu')(encoded)decoded_input = Dense(32, activation='relu')(encoded) decoded = Dense(64, activation='relu')(decoded_input)decoded = Dense(128, activation='relu')(decoded)decoded = Dense(784, activation='sigmoid')(encoded) autoencoder = Model(inputs=input_img, outputs=decoded)encoder = Model(inputs=input_img, outputs=decoded_input) autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy') autoencoder.fit(x_train, x_train, epochs=50, batch_size=256,                 shuffle=True, validation_data=(x_test, x_test)) encoded_imgs = encoder.predict(x_test)decoded_imgs = autoencoder.predict(x_test)#输入图像n = 10  # how many digits we will displayplt.figure(figsize=(20, 4))for i in range(n):    ax = plt.subplot(2, n, i + 1)    plt.imshow(x_test[i].reshape(28, 28))    plt.gray()    ax.get_xaxis().set_visible(False)    ax.get_yaxis().set_visible(False)     ax = plt.subplot(2, n, i + 1 + n)    plt.imshow(decoded_imgs[i].reshape(28, 28))    plt.gray()    ax.get_xaxis().set_visible(False)    ax.get_yaxis().set_visible(False)plt.show()

(4)降噪自编码器

from keras.layers import Input, Convolution2D, MaxPooling2D, UpSampling2Dfrom keras.models import Modelfrom keras.datasets import mnistimport numpy as npimport matplotlib.pyplot as pltfrom keras.callbacks import TensorBoard (x_train, _), (x_test, _) = mnist.load_data()x_train = x_train.astype('float32') / 255.x_test = x_test.astype('float32') / 255.x_train = np.reshape(x_train, (len(x_train), 28, 28, 1))x_test = np.reshape(x_test, (len(x_test), 28, 28, 1))noise_factor = 0.5x_train_noisy = x_train + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_train.shape) x_test_noisy = x_test + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_test.shape) x_train_noisy = np.clip(x_train_noisy, 0., 1.)x_test_noisy = np.clip(x_test_noisy, 0., 1.)print(x_train.shape)print(x_test.shape) input_img = Input(shape=(28, 28, 1)) x = Convolution2D(32, (3, 3), activation='relu', padding='same')(input_img)x = MaxPooling2D((2, 2), padding='same')(x)x = Convolution2D(32, (3, 3), activation='relu', padding='same')(x)encoded = MaxPooling2D((2, 2), padding='same')(x) x = Convolution2D(32, (3, 3), activation='relu', padding='same')(encoded)x = UpSampling2D((2, 2))(x)x = Convolution2D(32, (3, 3), activation='relu', padding='same')(x)x = UpSampling2D((2, 2))(x)decoded = Convolution2D(1, (3, 3), activation='sigmoid', padding='same')(x) autoencoder = Model(inputs=input_img, outputs=decoded)autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy') # 关上一个终端并启动TensorBoard,终端中输出 tensorboard --logdir=/autoencoderautoencoder.fit(x_train_noisy, x_train, epochs=10, batch_size=256,                shuffle=True, validation_data=(x_test_noisy, x_test),                callbacks=[TensorBoard(log_dir='autoencoder', write_graph=False)]) decoded_imgs = autoencoder.predict(x_test_noisy) n = 10plt.figure(figsize=(30, 6))for i in range(n):    ax = plt.subplot(3, n, i + 1)    plt.imshow(x_test[i].reshape(28, 28))    plt.gray()    ax.get_xaxis().set_visible(False)    ax.get_yaxis().set_visible(False)        ax = plt.subplot(3, n, i + 1 + n)    plt.imshow(x_test_noisy[i].reshape(28, 28))    plt.gray()    ax.get_xaxis().set_visible(False)    ax.get_yaxis().set_visible(False)     ax = plt.subplot(3, n, i + 1 + 2*n)    plt.imshow(decoded_imgs[i].reshape(28, 28))    plt.gray()    ax.get_xaxis().set_visible(False)    ax.get_yaxis().set_visible(False)plt.show()

学习更多编程常识,请关注我的公众号:

代码的路