数据

3万文本,train val test 6 2 2.

工具、手法

pytorch、sklearn、gensim的word2vec。
word2vec嵌入句子进行示意,padding后,用LSTM+linear对句序列向量分类。

代码

import jiebaimport xgboost as xgbfrom sklearn.model_selection import train_test_splitimport numpy as npfrom gensim.models import Word2Vec# reorganize datadef get_split_sentences(file_path):    res_sen=[]    with open(file_path) as f:        for line in f:            split_query=jieba.lcut(line.strip())            res_sen.append(split_query)    return res_senlabel2_sentences=get_split_sentences('label2.csv')label0_sentences=get_split_sentences('label0.csv')label1_sentences=get_split_sentences('label1.csv')all_sentences=[]all_sentences.extend(label0_sentences)all_sentences.extend(label1_sentences)all_sentences.extend(label2_sentences)# set paramsemb_size=128win=3model=Word2Vec(sentences=all_sentences,vector_size=emb_size,window=win,min_count=1)# retrieve word embeddingsw2vec=model.wv# assemble sentence embeddingsdef assemble_x(w2vec:dict,sentences):    sen_vs=[]    for sen in sentences:        v=np.vstack([w2vec[w] for w in sen])        v_len=v.shape[0]            sen_v=np.concatenate((v,np.zeros((max_len-v_len,emb_size)))) if v_len<max_len else v                sen_vs.append(sen_v)        return np.array(sen_vs)# ready the data for trainingx=assemble_x(w2vec,all_sentences)y=np.array([0]*13000+[1]*13000+[2]*4000)x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.6,shuffle=True)x_val,x_test,y_val,y_test=train_test_split(x_test,y_test,train_size=0.5,shuffle=True)device = torch.device("cuda" if torch.cuda.is_available() else "cpu")mid_dim=32k_class=3n=1000lr=0.1class Net(nn.Module):    def __init__(self,emb_size,mid_dim,k_class):        super().__init__()        self.lstm=nn.LSTM(emb_size,mid_dim,batch_first=True)        self.lin=nn.Linear(mid_dim,k_class)    def forward(self,x):        _,(hid,cell)=self.lstm(x)        hid=hid.squeeze(0).relu_()                out=self.lin(hid)        return F.softmax(out,dim=-1)simple_net=Net(emb_size,mid_dim,k_class).to(device)# simple_net=nn.LSTM(emb_size,mid_dim,batch_first=True)#nn.Sequential(,nn.ReLU(),nn.Linear(mid_dim,k_class),nn.Softmax())x_train=torch.from_numpy(x_train).float().to(device)y_train=torch.from_numpy(y_train).to(device)x_val=torch.from_numpy(x_val).float().to(device)y_val=torch.from_numpy(y_val).to(device)optimizer=optim.Adam(simple_net.parameters(),lr=lr)for i in range(n):    optimizer.zero_grad()    preds=simple_net(x_train)    loss=F.cross_entropy(preds,y_train)            loss_val=F.cross_entropy(simple_net(x_val),y_val)    if i%100==0:        print(f'{i} loss train: {loss.item()}, loss val: {loss_val.item()}')    loss.backward()    optimizer.step()with torch.no_grad():    x_test=torch.from_numpy(x_test).float().to(device)    y_test=torch.from_numpy(y_test)    simple_net.eval()    preds_test=simple_net(x_test).cpu().argmax(-1)    # labels是numpy的one hot标签        # preds_test=np.argmax(preds_test,dim=)    def get_scores(preds,gt):        from sklearn import metrics        # print ('AUC: %.4f' % metrics.roc_auc_score(gt,preds))        print ('ACC: %.4f' % metrics.accuracy_score(gt,preds))        print('macro')        print( 'Recall: %.4f' % metrics.recall_score(y_test,preds,average='macro'))        print( 'F1-score: %.4f' %metrics.f1_score(gt,preds,average='macro'))        print( 'Precision: %.4f' %metrics.precision_score(gt,preds,average='macro'))        print('\nmicro:')        print( 'Recall: %.4f' % metrics.recall_score(y_test,preds,average='micro'))        print( 'F1-score: %.4f' %metrics.f1_score(gt,preds,average='micro'))        print( 'Precision: %.4f' %metrics.precision_score(gt,preds,average='micro'))        get_scores(preds_test,y_test)

后果

ACC: 0.4303

macro:
Recall: 0.3333
F1-score: 0.2006
Precision: 0.1434

micro:
Recall: 0.4303
F1-score: 0.4303
Precision: 0.4303

小结

成果十分差,起因次要有

  • padding的0向量过于多了,导致模型失去的大部分都是0向量;
  • 并未对lstm做任何参数调整(懒