前不久在咱们技术交换群有群友提到最近他面试阿里70万总包的数据岗位,对方问Pandas5数据合并的函数,后果他只答出了2个。

那么,到底是哪五个呢?明天,咱们就来带大家理解一下!

目录:

    1. concat
    1. append
    1. merge
    1. join
    1. combine
  • 总结

1. concat

concatpandas中专门用于数据连贯合并的函数,性能十分弱小,反对纵向合并横向合并,默认状况下是纵向合并,具体能够通过参数进行设置。

pd.concat(    objs: 'Iterable[NDFrame] | Mapping[Hashable, NDFrame]',    axis=0,    join='outer',    ignore_index: 'bool' = False,    keys=None,    levels=None,    names=None,    verify_integrity: 'bool' = False,    sort: 'bool' = False,    copy: 'bool' = True,) -> 'FrameOrSeriesUnion'

在函数办法中,各参数含意如下:

objs: 用于连贯的数据,能够是DataFrameSeries组成的列表

axis=0 : 连贯的形式,默认为0也就是纵向连贯,可选 1 为横向连贯

join='outer':合并形式,默认为 inner也就是交加,可选 outer 为并集

ignore_index: 是否保留原有的索引

keys=None:连贯关系,应用传递的值作为一级索引

levels=None:用于结构多级索引

names=None:索引的名称

verify_integrity: 检测索引是否反复,如果为True则有反复索引会报错

sort: 并汇合并形式下,对columns排序

copy: 是否深度拷贝

接下来,咱们就对该函数性能进行演示

根底连贯

In [1]: import pandas as pdIn [2]: s1 = pd.Series(['a', 'b'])In [3]: s2 = pd.Series(['c', 'd'])In [4]: s1Out[4]: 0    a1    bdtype: objectIn [5]: s2Out[5]: 0    c1    ddtype: objectIn [6]: pd.concat([s1, s2])Out[6]: 0    a1    b0    c1    ddtype: objectIn [7]: df1 = pd.DataFrame([['a', 1], ['b', 2]],   ...:                     columns=['letter', 'number'])In [8]: df2 = pd.DataFrame([['c', 3], ['d', 4]],   ...:                     columns=['letter', 'number'])In [9]: pd.concat([df1, df2])Out[9]:   letter  number0      a       11      b       20      c       31      d       4

横向连贯

In [10]: pd.concat([df1, df2], axis=1)Out[10]:   letter  number letter  number0      a       1      c       31      b       2      d       4

默认状况下,concat是取并集,如果两个数据中有个数据没有对应行或列,则会填充为空值NaN

合并交加

In [11]: df3 = pd.DataFrame([['c', 3, 'cat'], ['d', 4, 'dog']],    ...:                     columns=['letter', 'number', 'animal'])In [12]: df1Out[12]:   letter  number0      a       11      b       2In [13]: df3Out[13]:   letter  number animal0      c       3    cat1      d       4    dogIn [14]: pd.concat([df1, df3], join='inner')Out[14]:   letter  number0      a       11      b       20      c       31      d       4

索引重置(不保留原有索引)

In [15]: pd.concat([df1, df3], join='inner', ignore_index=True)Out[15]:   letter  number0      a       11      b       22      c       33      d       4# 以下形式和上述的输入后果等价In [16]: pd.concat([df1, df3], join='inner').reset_index(drop=True)Out[16]:   letter  number0      a       11      b       22      c       33      d       4

指定索引

In [17]: pd.concat([df1, df3], keys=['df1','df3'])Out[17]:       letter  number animaldf1 0      a       1    NaN    1      b       2    NaNdf3 0      c       3    cat    1      d       4    dogIn [18]: pd.concat([df1, df3], keys=['df1','df3'], names=['df名称','行ID'])Out[18]:          letter  number animaldf名称 行ID                      df1  0        a       1    NaN     1        b       2    NaNdf3  0        c       3    cat     1        d       4    dog

检测反复

如果索引呈现反复,则无奈通过检测,会报错

In [19]: pd.concat([df1, df3], verify_integrity=True)Traceback (most recent call last):...ValueError: Indexes have overlapping values: Int64Index([0, 1], dtype='int64')

合并并集下columns排序

In [21]: pd.concat([df1, df3], sort=True)Out[21]:   animal letter  number0    NaN      a       11    NaN      b       20    cat      c       31    dog      d       4

DataFrame与Series合并

In [22]: pd.concat([df1, s1])Out[22]:   letter  number    00      a     1.0  NaN1      b     2.0  NaN0    NaN     NaN    a1    NaN     NaN    bIn [23]: pd.concat([df1, s1], axis=1)Out[23]:   letter  number  00      a       1  a1      b       2  b# 新增列个别可选以下两种形式In [24]: df1.assign(新增列=s1)Out[24]:   letter  number 新增列0      a       1   a1      b       2   bIn [25]: df1['新增列'] = s1In [26]: df1Out[26]:   letter  number 新增列0      a       1   a1      b       2   b

以上就concat函数办法的一些性能,相比之下,另外一个函数append也能够用于数据追加(纵向合并)

2. append

append次要用于追加数据,是比较简单间接的数据合并形式。

df.append(    other,    ignore_index: 'bool' = False,    verify_integrity: 'bool' = False,    sort: 'bool' = False,) -> 'DataFrame'

在函数办法中,各参数含意如下:

other: 用于追加的数据,能够是DataFrameSeries或组成的列表

ignore_index: 是否保留原有的索引

verify_integrity: 检测索引是否反复,如果为True则有反复索引会报错

sort: 并汇合并形式下,对columns排序

接下来,咱们就对该函数性能进行演示

根底追加

In [41]: df1.append(df2)Out[41]:   letter  number0      a       11      b       20      c       31      d       4In [42]: df1.append([df1,df2,df3])Out[42]:   letter  number animal0      a       1    NaN1      b       2    NaN0      a       1    NaN1      b       2    NaN0      c       3    NaN1      d       4    NaN0      c       3    cat1      d       4    dog

columns重置(不保留原有索引)

In [43]: df1.append([df1,df2,df3], ignore_index=True)Out[43]:   letter  number animal0      a       1    NaN1      b       2    NaN2      a       1    NaN3      b       2    NaN4      c       3    NaN5      d       4    NaN6      c       3    cat7      d       4    dog

检测反复

如果索引呈现反复,则无奈通过检测,会报错

In [44]: df1.append([df1,df2], verify_integrity=True)Traceback (most recent call last):...ValueError: Indexes have overlapping values: Int64Index([0, 1], dtype='int64')

索引排序

In [46]: df1.append([df1,df2,df3], sort=True)Out[46]:   animal letter  number0    NaN      a       11    NaN      b       20    NaN      a       11    NaN      b       20    NaN      c       31    NaN      d       40    cat      c       31    dog      d       4

追加Series

In [49]: s = pd.Series({'letter':'s1','number':9})In [50]: sOut[50]: letter    s1number     9dtype: objectIn [51]: df1.append(s)Traceback (most recent call last):...TypeError: Can only append a Series if ignore_index=True or if the Series has a nameIn [53]: df1.append(s, ignore_index=True)Out[53]:   letter  number0      a       11      b       22     s1       9

追加字典

这个在爬虫的时候比拟好使,每爬取一条数据就合并到DataFrame相似数据中存储起来

In [54]: dic = {'letter':'s1','number':9}In [55]: df1.append(dic, ignore_index=True)Out[55]:   letter  number0      a       11      b       22     s1       9

3. merge

merge函数办法相似SQL里的join,能够是pd.merge或者df.merge,区别就在于后者待合并的数据是

pd.merge(    left: 'DataFrame | Series',    right: 'DataFrame | Series',    how: 'str' = 'inner',    on: 'IndexLabel | None' = None,    left_on: 'IndexLabel | None' = None,    right_on: 'IndexLabel | None' = None,    left_index: 'bool' = False,    right_index: 'bool' = False,    sort: 'bool' = False,    suffixes: 'Suffixes' = ('_x', '_y'),    copy: 'bool' = True,    indicator: 'bool' = False,    validate: 'str | None' = None,) -> 'DataFrame'

在函数办法中,要害参数含意如下:

left: 用于连贯的左侧数据

right: 用于连贯的右侧数据

how: 数据连贯形式,默认为 inner,可选outer、left和right

on: 连贯关键字段,左右侧数据中须要都存在,否则就用left_on和right_on

left_on: 左侧数据用于连贯的关键字段

right_on: 右侧数据用于连贯的关键字段

left_index: True示意左侧索引为连贯关键字段

right_index: True示意右侧索引为连贯关键字段

suffixes: 'Suffixes' = ('_x', '_y'),能够自在指定,就是同列名合并后列名显示后缀

indicator: 是否显示合并后某行数据的归属起源

接下来,咱们就对该函数性能进行演示

根底合并

In [55]: df1 = pd.DataFrame({'key': ['foo', 'bar', 'bal'],    ...:                     'value2': [1, 2, 3]})In [56]: df2 = pd.DataFrame({'key': ['foo', 'bar', 'baz'],    ...:                     'value1': [5, 6, 7]})In [57]: df1.merge(df2)Out[57]:    key  value2  value10  foo       1       51  bar       2       6

其余连贯形式

In [58]: df1.merge(df2, how='left')Out[58]:    key  value2  value10  foo       1     5.01  bar       2     6.02  bal       3     NaNIn [59]: df1.merge(df2, how='right')Out[59]:    key  value2  value10  foo     1.0       51  bar     2.0       62  baz     NaN       7In [60]: df1.merge(df2, how='outer')Out[60]:    key  value2  value10  foo     1.0     5.01  bar     2.0     6.02  bal     3.0     NaN3  baz     NaN     7.0In [61]: df1.merge(df2, how='cross')Out[61]:   key_x  value2 key_y  value10   foo       1   foo       51   foo       1   bar       62   foo       1   baz       73   bar       2   foo       54   bar       2   bar       65   bar       2   baz       76   bal       3   foo       57   bal       3   bar       68   bal       3   baz       7

指定连贯键

能够指定单个连贯键,也能够指定多个连贯键

In [62]: df1 = pd.DataFrame({'lkey1': ['foo', 'bar', 'bal'],    ...:                     'lkey2': ['a', 'b', 'c'],    ...:                     'value2': [1, 2, 3]})In [63]: df2 = pd.DataFrame({'rkey1': ['foo', 'bar', 'baz'],    ...:                     'rkey2': ['a', 'b', 'c'],    ...:                     'value2': [5, 6, 7]})    In [64]: df1Out[64]:   lkey1 lkey2  value20   foo     a       11   bar     b       22   bal     c       3In [65]: df2Out[65]:   rkey1 rkey2  value20   foo     a       51   bar     b       62   baz     c       7In [66]: df1.merge(df2, left_on='lkey1', right_on='rkey1')Out[66]:   lkey1 lkey2  value2_x rkey1 rkey2  value2_y0   foo     a         1   foo     a         51   bar     b         2   bar     b         6In [67]: df1.merge(df2, left_on=['lkey1','lkey2'], right_on=['rkey1','rkey2'])Out[67]:   lkey1 lkey2  value2_x rkey1 rkey2  value2_y0   foo     a         1   foo     a         51   bar     b         2   bar     b         6

指定索引为键

Out[68]: df1.merge(df2, left_index=True, right_index=True)Out[68]:   lkey1 lkey2  value2_x rkey1 rkey2  value2_y0   foo     a         1   foo     a         51   bar     b         2   bar     b         62   bal     c         3   baz     c         7

设置反复列后缀

In [69]: df1.merge(df2, left_on='lkey1', right_on='rkey1', suffixes=['左','右'])Out[69]:   lkey1 lkey2  value2左 rkey1 rkey2  value2右0   foo     a        1   foo     a        51   bar     b        2   bar     b        6

连贯批示

新增一列用于显示数据起源

In [70]: df1.merge(df2, left_on='lkey1', right_on='rkey1', suffixes=['左','右'], how='outer',    ...:           indicator=True    ...:       )Out[70]:   lkey1 lkey2  value2左 rkey1 rkey2  value2右      _merge0   foo     a      1.0   foo     a      5.0        both1   bar     b      2.0   bar     b      6.0        both2   bal     c      3.0   NaN   NaN      NaN   left_only3   NaN   NaN      NaN   baz     c      7.0  right_only

4. join

join就有点想append之于concat,用于数据合并

df.join(    other: 'FrameOrSeriesUnion',    on: 'IndexLabel | None' = None,    how: 'str' = 'left',    lsuffix: 'str' = '',    rsuffix: 'str' = '',    sort: 'bool' = False,) -> 'DataFrame'

在函数办法中,要害参数含意如下:

other: 用于合并的右侧数据

on: 连贯关键字段,左右侧数据中须要都存在,否则就用left_on和right_on

how: 数据连贯形式,默认为 inner,可选outer、left和right

lsuffix: 左侧同名列后缀

rsuffix:右侧同名列后缀

接下来,咱们就对该函数性能进行演示

In [71]: df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'],    ...:                     'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})In [72]: other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],    ...:                        'B': ['B0', 'B1', 'B2']})In [73]: dfOut[73]:   key   A0  K0  A01  K1  A12  K2  A23  K3  A34  K4  A45  K5  A5In [74]: otherOut[74]:   key   B0  K0  B01  K1  B12  K2  B2In [75]: df.join(other, on='key')Traceback (most recent call last):...ValueError: You are trying to merge on object and int64 columns. If you wish to proceed you should use pd.concat

如果想用key关键字, 则须要key是索引。。。

指定key

In [76]: df.set_index('key').join(other.set_index('key'))Out[76]:       A    Bkey         K0   A0   B0K1   A1   B1K2   A2   B2K3   A3  NaNK4   A4  NaNK5   A5  NaNIn [77]: df.join(other.set_index('key'), on='key')Out[77]:   key   A    B0  K0  A0   B01  K1  A1   B12  K2  A2   B23  K3  A3  NaN4  K4  A4  NaN5  K5  A5  NaN

指定反复列后缀

In [78]: df.join(other, lsuffix='_左', rsuffix='右')Out[78]:   key_左   A key右    B0    K0  A0   K0   B01    K1  A1   K1   B12    K2  A2   K2   B23    K3  A3  NaN  NaN4    K4  A4  NaN  NaN5    K5  A5  NaN  NaN

其余参数就不多做介绍了,和merge根本一样。

5. combine

在数据合并的过程中,咱们可能须要对对应地位的值进行肯定的计算,pandas提供了combinecombine_first函数办法来进行这方面的单干操作。

df.combine(    other: 'DataFrame',    func,    fill_value=None,    overwrite: 'bool' = True,) -> 'DataFrame'

比方,数据合并的时候取单元格最小的值

In [79]: df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]})In [80]: df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})In [81]: df1Out[81]:    A  B0  0  41  0  4In [82]: df2Out[82]:    A  B0  1  31  1  3In [83]: take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2In [84]: df1.combine(df2, take_smaller)Out[84]:    A  B0  0  31  0  3# 也能够调用numpy的函数In [85]: import numpy as npIn [86]: df1.combine(df2, np.minimum)Out[86]:    A  B0  0  31  0  3

fill_value填充缺失值

In [87]: df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]})In [87]: df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})In [88]: df1Out[88]:    A    B0  0  NaN1  0  4.0In [89]: df2Out[89]:    A  B0  1  31  1  3In [90]: df1.combine(df2, take_smaller, fill_value=-88)Out[90]:    A     B0  0 -88.01  0   4.0

overwrite=False保留

In [91]: df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]})In [92]: df2 = pd.DataFrame({'B': [3, 3], 'C': [-10, 1], }, index=[1, 2])In [93]: df1Out[93]:    A  B0  0  41  0  4In [94]: df2Out[94]:    B   C1  3 -102  3   1In [95]: df1.combine(df2, take_smaller)Out[95]:     A    B     C0 NaN  NaN   NaN1 NaN  3.0 -10.02 NaN  3.0   1.0# 保留A列原有的值In [96]: df1.combine(df2, take_smaller, overwrite=False)Out[96]:      A    B     C0  0.0  NaN   NaN1  0.0  3.0 -10.02  NaN  3.0   1.0

另外一个combine_first

df.combine_first(other: 'DataFrame') -> 'DataFrame'

当df中元素为空采纳other里的进行替换,后果为并汇合并

In [97]: df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]})In [98]: df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})In [99]: df1Out[99]:      A    B0  NaN  NaN1  0.0  4.0In [100]: df2Out[100]:    A  B0  1  31  1  3In [101]: df1.combine_first(df2)Out[101]:      A    B0  1.0  3.01  0.0  4.0In [102]: df1 = pd.DataFrame({'A': [None, 0], 'B': [4, None]})In [103]: df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1]}, index=[1, 2])In [104]: df1Out[104]:      A    B0  NaN  4.01  0.0  NaNIn [105]: df2Out[105]:    B  C1  3  12  3  1In [106]: df1.combine_first(df2)Out[106]:      A    B    C0  NaN  4.0  NaN1  0.0  3.0  1.02  NaN  3.0  1.0

总结

以上就本次介绍的对于Pandas数据合并的全部内容,相比之下咱们能够发现:

  • append次要用于纵向追加数据,比较简单间接;
  • concat性能最弱小,不仅能够纵向合并数据还能够横向合并数据而且反对很多其余条件设置;
  • merge则次要用于横向合并数据,相似SQL里的join连贯;
  • join则比较简单,用于横向合并数据,条件绝对刻薄;
  • combine更像是依照元素进行合并,依据肯定的条件(函数规定)来进行数据合并。

以上就是本次全部内容,大家感兴趣能够本人试试感受一下。

如果你感觉文章还不错,欢送关注公众号:Python编程学习圈,每日干货分享,发送“J”还可支付大量学习材料。或是返回编程学习网,理解更多编程技术常识。