咱们晓得,Cluster 是 Google Kubernetes Engine (简称GKE)的根底,代表容器化应用程序的 Kubernetes 对象都在集群之上运行。
Google Kubernetes Engine (GKE) 提供了一个托管环境,开发人员能够应用 Google 基础架构在 GKE 中部署、治理和扩缩容器化利用。GKE 环境包含多个 Compute Engine 实例,这些实例组合在一起就造成了 Google Kubernetes Cluster.
SAP HANA Expression 是 SAP HANA 的简化版本,旨在在笔记本电脑和其余主机(包含云托管的虚拟机)上运行,当然也就反对在本文刚刚形容的 Google Kubernetes Cluster 上运行。这个版本除了反对 SAP HANA传统的内存数据库性能之外,还提供 bring-your-own-language 等多种技术栈,反对微服务、预测剖析和机器学习算法,以及用于构建洞察驱动应用程序的天文空间解决等个性。
本文将具体介绍如何在 Google Kubernetes Cluster 上部署并应用 HANA Expression Database Service.
在 Google Cloud Platform 上创立 Google Kubernetes Cluster 实例
登录 Google Cloud Platform 控制台:
点击控制台左上角的 Hamburger 菜单,创立一个新的 Kubernetes Cluster:
保护 Cluster 的名称,抉择失当的版本,点击 Customize 进行定制化:
为 Cluster 指定 CPU 和内存参数,选定 Ubuntu 作为操作系统。Cluster 的尺寸设置为 1.
Cluster 创立完并胜利部署后,点击 Connect 按钮进行连贯。
连贯胜利之后,就能够应用 Cloud Shell 操作集群了:
Cloud Shell 提供了命令行的形式同 Cluster 进行交互。
在 Google Kubernetes Cluster 上部署 HANA Expression Database Service
应用以下命令创立一个 secret
以获取 Docker 镜像:
kubectl create secret docker-registry docker-secret --docker-server=https://index.docker.io/v1/ --docker-username=xxx --docker-password=yyyyyy --docker-email=jerry@gmail.com
创立一个 yaml 格局的部署配置文件(Deployment Configuration File), 另存成 hxe.yaml
文件:
kind: ConfigMapapiVersion: v1metadata: creationTimestamp: 2022-06-25T19:14:38Z name: hxe-passdata: password.json: |+ {"master_password" : "JERRYHana1"}---kind: PersistentVolumeapiVersion: v1metadata: name: persistent-vol-hxe labels: type: localspec: storageClassName: manual capacity: storage: 150Gi accessModes: - ReadWriteOnce hostPath: path: "/data/hxe_pv"---kind: PersistentVolumeClaimapiVersion: v1metadata: name: hxe-pvcspec: storageClassName: manual accessModes: - ReadWriteOnce resources: requests: storage: 50Gi---apiVersion: apps/v1kind: Deploymentmetadata: name: hxe labels: name: hxespec: selector: matchLabels: run: hxe app: hxe role: master tier: backend replicas: 1 template: metadata: labels: run: hxe app: hxe role: master tier: backend spec: initContainers: - name: install image: busybox command: [ 'sh', '-c', 'chown 12000:79 /hana/mounts' ] volumeMounts: - name: hxe-data mountPath: /hana/mounts volumes: - name: hxe-data persistentVolumeClaim: claimName: hxe-pvc - name: hxe-config configMap: name: hxe-pass imagePullSecrets: - name: docker-secret containers: - name: hxe-container image: "store/saplabs/hanaexpress:2.00.030.00.20180403.2" ports: - containerPort: 39013 name: port1 - containerPort: 39015 name: port2 - containerPort: 39017 name: port3 - containerPort: 8090 name: port4 - containerPort: 39041 name: port5 - containerPort: 59013 name: port6 args: [ "--agree-to-sap-license", "--dont-check-system", "--passwords-url", "file:///hana/hxeconfig/password.json" ] volumeMounts: - name: hxe-data mountPath: /hana/mounts - name: hxe-config mountPath: /hana/hxeconfig - name: sqlpad-container image: "sqlpad/sqlpad" ports: - containerPort: 3000---apiVersion: v1kind: Servicemetadata: name: hxe-connect labels: app: hxespec: type: LoadBalancer ports: - port: 39013 targetPort: 39013 name: port1 - port: 39015 targetPort: 39015 name: port2 - port: 39017 targetPort: 39017 name: port3 - port: 39041 targetPort: 39041 name: port5 selector: app: hxe---apiVersion: v1kind: Servicemetadata: name: sqlpad labels: app: hxespec: type: LoadBalancer ports: - port: 3000 targetPort: 3000 protocol: TCP name: sqlpad selector: app: hxe
这个 yaml 文件里定义了一个 HANA Expression 的 Docker 镜像:store/saplabs/hanaexpress:2.00.030.00.20180403.2
应用如下命令即将这个 Docker 镜像部署到 Kubernetes Cluster 上:
- kubectl create -f hxe.yaml
- kubectl describe pods
期待部署胜利完结:
执行命令行 kubectl get pods
,确保 pod 状态为 Running
,而后进入 Pod 容器外部:
kubectl exec -it <<pod-name>> bash
此时就能够应用 SQL 命令行,连贯运行在 Pod 里的 HANA Expression 实例了:
hdbsql -i 90 -d systemdb -u SYSTEM -p HXEHana1
给数据库增加 document store
的反对:alter database HXE add 'docstore';
从 SQLPAD service 取得 external IP 地址:
kubectl get services
有了这个内部能够拜访的 IP 地址之后,拜访其 3000 端口,就能够在浏览器里登录 SQLPAD 了:
点击 Sign In,创立一个 Administration account.
应用 Connections 菜单,连贯 HANA Expression 实例里的数据库表:
从 kubectl get services
命令行后果列表里找到 hxe-connect
,抄下其 External IP 地址:
新建一个数据库连贯,保护刚刚抄下来的 External IP 地址,数据库用户名和明码,Tenant 等登录信息:
数据库连贯建设连贯之后,就能够新建一个 Query,对其进行读写操作。
创立一个名叫 quotes 的 document store, 并插入一些测试数据:
create collection quotes;--Create a collection for document store and insert JSON valuesinsert into quotes values ( { "FROM" : 'HOMER', "QUOTE" : 'I want to share something with you: The three little sentences that will get you through life. Number 1: Cover for me. Number 2: Oh, good idea, Boss! Number 3: It wai like that when I got here.', "MOES_BAR" : 'Point( -86.880306 36.508361 )', "QUOTE_ID" : 1 });insert into quotes values ( { "FROM" : 'HOMER', "QUOTE" : 'Wait a minute. Bart''s teacher is named Krabappel? Oh, I''ve been calling her Crandall. Why did not anyone tell me? Ohhh, I have been making an idiot out of myself!', "QUOTE_ID" : 2, "MOES_BAR" : 'Point( -87.182708 37.213414 )' });insert into quotes values ( { "FROM" : 'HOMER', "QUOTE" : 'Oh no! What have I done? I smashed open my little boy''s piggy bank, and for what? A few measly cents, not even enough to buy one beer. Weit a minute, lemme count and make sure…not even close.', "MOES_BAR" : 'Point( -122.400690 37.784366 )', "QUOTE_ID" : 3 });
创立一个 Column 表,开启 Fuzzy Search 的反对:
create column table quote_analysis( id integer, homer_quote text FAST PREPROCESS ON FUZZY SEARCH INDEX ON, lon_lat nvarchar(200));
将插入到 document store collection 的数据拷贝到下面的 Column 表里:
insert into quote_analysiswith doc_store as (select quote_id, quote from quotes)select doc_store.quote_id as id, doc_store.quote as homer_quote, 'Point( -122.676366 45.535889 )'from doc_store;
查问与 wait
类似度最低的词:
select id, score() as similarity , lon_lat, TO_VARCHAR(HOMER_QUOTE)from quote_analysiswhere contains(HOMER_QUOTE, 'wait', fuzzy(0.5,'textsearch=compare'))order by similarity asc
总结
至此,咱们实现了在 Google Kubernetes Cluster 里操作 HANA Expression Database Service 的操作步骤。从整个过程不难感觉出,将蕴含 HANA Expression 的 Docker 镜像部署在 Google Kubernetes Cluster 并运行在 Pod 内,实现了 HANA Expression 服务的开箱即用,从而防止了 On-Premises 部署模式下 HANA Expression 繁琐的装置和配置步骤。