本篇详解pandas中缺失值(Missing data handling)解决罕用操作。
缺失值解决罕用于数据分析数据荡涤阶段;
Pandas中将如下类型定义为缺失值:
NaN: ‘’, ‘#N/A’, ‘#N/A N/A’, ‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’,‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘<NA>’, ‘N/A’, ‘NA’,‘NULL’, ‘NaN’, ‘n/a’, ‘nan’, ‘null’,None
1、pandas中缺失值注意事项
pandas和numpy中任意两个缺失值不相等(np.nan != np.nan)
下图中两个NaN不相等:
In [224]: df1.iloc[3:,0].values#取出'one'列中的NaNOut[224]: array([nan])In [225]: df1.iloc[2:3,1].values#取出'two'列中的NaNOut[225]: array([nan])In [226]: df1.iloc[3:,0].values == df1.iloc[2:3,1].values#两个NaN值不相等Out[226]: array([False])
pandas读取文件时那些值被视为缺失值
NaN: ‘’, ‘#N/A’, ‘#N/A N/A’, ‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’,‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘<NA>’, ‘N/A’, ‘NA’,‘NULL’, ‘NaN’, ‘n/a’, ‘nan’, ‘null’,None
2、pandas缺失值操作
pandas.DataFrame中判断那些值是缺失值:isna办法
#定义一个试验DataFrameIn [47]: d = {'one': pd.Series([1., 2., 3.], index=['a', 'b', 'c']),'two': pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])}In [48]: df = pd.DataFrame(d)In [49]: dfOut[49]: one twoa 1.0 1.0b 2.0 2.0c 3.0 3.0d NaN 4.0In [120]: df.isna()#返回形态一样的bool值填充DataFrameOut[120]: one twoa False Falseb False Falsec False Falsed True False
pandas.DataFrame中删除蕴含缺失值的行:dropna(axis=0)
In [67]: dfOut[67]: one twoa 1.0 1.0b 2.0 2.0c 3.0 3.0d NaN 4.0In [68]: df.dropna()#默认axis=0Out[68]: one twoa 1.0 1.0b 2.0 2.0c 3.0 3.0
pandas.DataFrame中删除蕴含缺失值的列:dropna(axis=1)
In [72]: df.dropna(axis=1)Out[72]: twoa 1.0b 2.0c 3.0d 4.0
pandas.DataFrame中删除蕴含缺失值的列和行:dropna(how='any')
In [97]: df['three']=np.nan#新增一列全为NaNIn [98]: dfOut[98]: one two threea 1.0 1.0 NaNb 2.0 2.0 NaNc 3.0 3.0 NaNd NaN 4.0 NaNIn [99]: df.dropna(how='any')Out[99]:Empty DataFrame#全删除了Columns: [one, two, three]Index: []
pandas.DataFrame中删除全是缺失值的行:dropna(axis=0,how='all')
In [101]: df.dropna(axis=0,how='all')Out[101]: one two threea 1.0 1.0 NaNb 2.0 2.0 NaNc 3.0 3.0 NaNd NaN 4.0 NaN
pandas.DataFrame中删除全是缺失值的列:dropna(axis=1,how='all')
In [102]: df.dropna(axis=1,how='all')Out[102]: one twoa 1.0 1.0b 2.0 2.0c 3.0 3.0d NaN 4.0
pandas.DataFrame中应用某个值填充缺失值:fillna(某个值)
In [103]: df.fillna(666)#应用666填充Out[103]: one two threea 1.0 1.0 666.0b 2.0 2.0 666.0c 3.0 3.0 666.0d 666.0 4.0 666.0
pandas.DataFrame中应用前一列的值填充缺失值:fillna(axis=1,method='ffill')
#后一列填充为fillna(axis=1,method=bfill')In [109]: df.fillna(axis=1,method='ffill')Out[109]: one two threea 1.0 1.0 1.0b 2.0 2.0 2.0c 3.0 3.0 3.0d NaN 4.0 4.0
pandas.DataFrame中应用前一行的值填充缺失值:fillna(axis=0,method='ffill')
#后一行填充为fillna(axis=1,method=bfill')In [110]: df.fillna(method='ffill')Out[110]: one two threea 1.0 1.0 NaNb 2.0 2.0 NaNc 3.0 3.0 NaNd 3.0 4.0 NaN
pandas.DataFrame中应用字典传值填充指定列的缺失值
In [112]: df.fillna({'one':666})#填充one列的NaN值Out[112]: one two threea 1.0 1.0 NaNb 2.0 2.0 NaNc 3.0 3.0 NaNd 666.0 4.0 NaNIn [113]: df.fillna({'three':666})Out[113]: one two threea 1.0 1.0 666.0b 2.0 2.0 666.0c 3.0 3.0 666.0d NaN 4.0 666.0
以上就是本次分享的所有内容,如果你感觉文章还不错,欢送关注公众号:Python编程学习圈,每日干货分享,发送“J”还可支付大量学习材料。或是返回编程学习网,理解更多编程技术常识。