容器的性能扩大和refresh办法解析
在之前文章中咱们理解了对于Spring中bean的加载流程,并始终应用BeanFactory接口以及它的默认实现类XmlBeanFactory,在Spring中还提供了另一个接口ApplicationContext,用于扩大BeanFactory中现有的性能。
首先BeanFactory和ApplicationContext都是用于加载bean的,然而相比之下,ApplicationContext提供了更多的扩大性能,ApplicationContext蕴含了BeanFactory的所有性能。通常咱们会优先应用ApplicationContext。
咱们来看看ApplicationContext多了哪些性能?
首先看一下写法上的不同。
应用BeanFactory形式加载XML
final BeanFactory beanFactory = new XmlBeanFactory(new ClassPathResource("spring-config.xml"));
应用ApplicationContext形式加载XML
final ApplicationContext applicationContext = new ClassPathXmlApplicationContext("spring-config.xml");
咱们开始点开ClassPathXmlApplicationContext的构造函数,进行剖析。
public ClassPathXmlApplicationContext(String configLocation) throws BeansException { this(new String[] {configLocation}, true, null);}
public ClassPathXmlApplicationContext( String[] configLocations, boolean refresh, @Nullable ApplicationContext parent) throws BeansException { super(parent); setConfigLocations(configLocations); if (refresh) { refresh(); }}
在ClassPathXmlApplicationContext中能够将配置文件门路以数组的模式传入,对解析及性能实现都在refresh()
办法中实现。
设置配置门路
public void setConfigLocations(@Nullable String... locations) { if (locations != null) { Assert.noNullElements(locations, "Config locations must not be null"); this.configLocations = new String[locations.length]; for (int i = 0; i < locations.length; i++) { this.configLocations[i] = resolvePath(locations[i]).trim(); } } else { this.configLocations = null; }}
此函数次要解析给定的门路数组,如果数组中蕴含特殊符号,如${var},那么在resolvePath办法中会搜查匹配的零碎变量并替换。
扩大性能
设置完门路后,就能够对文件进行解析和各种性能的实现,能够说在refresh办法中简直蕴含了ApplicationContext中提供的全副性能,而且此函数的逻辑也非常清晰,能够很容易剖析对应档次和逻辑。
public void refresh() throws BeansException, IllegalStateException { synchronized (this.startupShutdownMonitor) { // 筹备刷新的上下文环境,包含设置启动工夫,是否激活标识位 // 初始化属性源(property source)配置 prepareRefresh(); // 初始化BeanFactory 并进行xml文件读取 ConfigurableListableBeanFactory beanFactory = obtainFreshBeanFactory(); // 对BeanFactory进行各种性能填充 prepareBeanFactory(beanFactory); try { // 子类笼罩办法做额定的解决 postProcessBeanFactory(beanFactory); // 激活各种BeanFactory处理器 invokeBeanFactoryPostProcessors(beanFactory); // 注册拦挡bean创立的bean处理器,只是注册,具体调用在getBean中 registerBeanPostProcessors(beanFactory); // 为上下文初始化Message源,国际化解决 initMessageSource(); // 初始化利用音讯播送器,并放入applicationEventMulticaster bean中 initApplicationEventMulticaster(); // 留给子类来初始化其余的bean onRefresh(); // 在所有注册的bean中查找Listener bean,注册到音讯播送器中 registerListeners(); // 初始化剩下的单例bean (非惰性) finishBeanFactoryInitialization(beanFactory); //实现刷新过程,告诉生命周期处理器LifecycleProcessor刷新过程,同时收回ContextRefreshEvent告诉他人 finishRefresh(); } catch (BeansException ex) { if (logger.isWarnEnabled()) { logger.warn("Exception encountered during context initialization - " + "cancelling refresh attempt: " + ex); } // 销毁曾经初始化的 singleton 的 Beans,免得有些 bean 会始终占用资源 destroyBeans(); // 重置流动标记 cancelRefresh(ex); throw ex; } finally { //重置公共缓存 resetCommonCaches(); } }}
咱们总结一下初始化的步骤。
- 初始化前的筹备工作,例如对系统属性或者环境变量进行筹备及验证
- 初始化BeanFactory,并对XML文件进行读取。之前咱们说过ClassPathXmlApplicationContext中蕴含着BeanFactory所提供的所有特色,那么在这一步将会复用BeanFactory中的配置文件读取解析及其他性能,在这一步之后ClassPathXmlApplicationContext就曾经蕴含了BeanFactory所提供的性能,也就是能够对bean进行提取等操作
- 对BeanFactory进行各种性能填充
- 子类笼罩办法做额定的解决。次要用于咱们在业务上做进一步扩大
- 激活各种BeanFactory处理器
- 注册拦挡bean创立的bena处理器,这里仅仅是注册,真正调用在getBean中
- 为上下文初始化Message源,对不同语言的音讯体进行国际化解决
- 初始化利用音讯播送器,并放入"applicationEventMulticaster" bean中
- 留给子类来初始化其余的bean
- 在所有注册的bean中查找listener bean,注册到音讯播送器中
- 初始化剩下的单实例(非惰性)
- 实现刷新过程,告诉生命周期处理器lifecycleProcessor刷新过程,同时收回ContextRefreshEvent来告诉他人
环境筹备
prepareRefresh办法次要做些筹备工作,比方对系统属性及环境变量的初始化及验证。
initPropertySources
该办法外面是一个空实现,次要用于给咱们依据须要去重写该办法,并在办法中进行个性化的属性解决及设置。
protected void initPropertySources() { // For subclasses: do nothing by default.}
validateRequiredProperties
该办法次要对属性进行验证。默认状况下什么也没校验。在咱们继承了ClassPathXmlApplicationContext类重写了initPropertySources办法后会进行相干校验。
加载BeanFactory
obtainFreshBeanFactory 办法次要用来获取BeanFactory,方才说过ApplicationContext领有BeanFactory的所有性能,这个办法就是实现BeanFactory的中央,也就是说调用完该办法后,applicationContext就领有了BeanFactory的性能。
protected ConfigurableListableBeanFactory obtainFreshBeanFactory() { //初始化BeanFactory,并进行XML文件读取,将失去的BeanFactory记录到以后实体属性中 refreshBeanFactory(); //返回以后实体的beanFactory属性 return getBeanFactory();}
protected final void refreshBeanFactory() throws BeansException { if (hasBeanFactory()) { destroyBeans(); closeBeanFactory(); } try { DefaultListableBeanFactory beanFactory = createBeanFactory(); beanFactory.setSerializationId(getId()); customizeBeanFactory(beanFactory); loadBeanDefinitions(beanFactory); synchronized (this.beanFactoryMonitor) { this.beanFactory = beanFactory; } } catch (IOException ex) { throw new ApplicationContextException("I/O error parsing bean definition source for " + getDisplayName(), ex); }}
咱们进入AbstractRefreshableApplicationContext#refreshBeanFactory()
办法中。
protected final void refreshBeanFactory() throws BeansException { //判断是否存在beanFactory if (hasBeanFactory()) { //销毁所有单例 destroyBeans(); //重置beanFactory closeBeanFactory(); } try { //创立beanFactory DefaultListableBeanFactory beanFactory = createBeanFactory(); //设置序列化id beanFactory.setSerializationId(getId()); //定制beanFactory,设置相干属性,包含是否容许笼罩同名称不同定义的对象以及循环依赖 customizeBeanFactory(beanFactory); //初始化DocumentReader,进行XML读取和解析 loadBeanDefinitions(beanFactory); synchronized (this.beanFactoryMonitor) { this.beanFactory = beanFactory; } } catch (IOException ex) { throw new ApplicationContextException("I/O error parsing bean definition source for " + getDisplayName(), ex); }}
总结一下这个办法的流程:
- 创立DefaultListableBeanFactory。申明形式为:
BeanFactory bf = new XmlBeanFactory("beanFactoryTest.xml")
,其中的XmlBeanFactory继承自DefaultListableBeanFactory,并提供了XmlBeanDefinitionReader类型的reader属性,也就是说DefaultListableBeanFactory是容器的根底,必须首先实例化,这里就是实例化DefaultListableBeanFactory的步骤 - 指定序列化ID
- 定制BeanFactory
- 加载BeanDefinition
- 应用全局变量记录BeanFactory类实例
定制BeanFactory
首先咱们先理解customizeBeanFactory办法,该办法是在根本容器的根底上,减少了是否容许笼罩、是否容许扩大的设置。
protected void customizeBeanFactory(DefaultListableBeanFactory beanFactory) { //如果不为空,设置beanFactory对象响应的属性,含意:是否容许笼罩同名称的不同定义的对象 if (this.allowBeanDefinitionOverriding != null) { beanFactory.setAllowBeanDefinitionOverriding(this.allowBeanDefinitionOverriding); } //如果属性不为空,设置给beanFactory对象相应属性,含意:是否容许bean之间存在循环依赖 if (this.allowCircularReferences != null) { beanFactory.setAllowCircularReferences(this.allowCircularReferences); }}
具体这里只是做了简略的判断,具体设置属性的中央,应用子类笼罩即可。例如:
/** * @author 神秘杰克 * 公众号: Java菜鸟程序员 * @date 2022/6/12 * @Description 自定义ClassPathXmlApplicationContext */public class MyClassPathXmlApplicationContext extends ClassPathXmlApplicationContext { @Override protected void customizeBeanFactory(DefaultListableBeanFactory beanFactory) { super.setAllowBeanDefinitionOverriding(false); super.setAllowCircularReferences(false); super.customizeBeanFactory(beanFactory); }}
加载BeanDefinition
在初始化了DefaultListableBeanFactory后,咱们还须要XmlBeanDefinitionReader来读取XML文件,这个步骤中首先要做的就是初始化XmlBeanDefinitionReader。
protected void loadBeanDefinitions(DefaultListableBeanFactory beanFactory) throws BeansException, IOException { //为指定beanFactory创立XmlBeanDefinitionReader XmlBeanDefinitionReader beanDefinitionReader = new XmlBeanDefinitionReader(beanFactory); //进行环境变量的设置 beanDefinitionReader.setEnvironment(this.getEnvironment()); beanDefinitionReader.setResourceLoader(this); beanDefinitionReader.setEntityResolver(new ResourceEntityResolver(this)); //对beanDefinitionReader进行设置,能够笼罩 initBeanDefinitionReader(beanDefinitionReader); loadBeanDefinitions(beanDefinitionReader);}
初始化了DefaultListableBeanFactory和XmlBeanDefinitionReader后,咱们就能够进行配置文件的读取了。最终XmlBeanDefinitionReader所去读的BeanDefinitionHolder都会注册到DefaultListableBeanFactory中。
通过该办法后类型为DefaultListableBeanFactory中的变量beanFactory曾经蕴含了所有解析好的配置。对于配置文件的读取这一部分之前文章曾经讲过,这里就不再赘述。
性能扩大
咱们在实现了配置文件解析后,咱们接着进入prepareBeanFactory办法。
protected void prepareBeanFactory(ConfigurableListableBeanFactory beanFactory) { //设置beanFactory的ClassLoader为以后context的ClassLoader beanFactory.setBeanClassLoader(getClassLoader()); //设置beanFactory的表达式语言解决 beanFactory.setBeanExpressionResolver(new StandardBeanExpressionResolver(beanFactory.getBeanClassLoader())); //为beanFactory减少了一个默认的propertyEditor,次要是对bean的属性等设置治理的一个工具 beanFactory.addPropertyEditorRegistrar(new ResourceEditorRegistrar(this, getEnvironment())); //增加BeanPostProcessor beanFactory.addBeanPostProcessor(new ApplicationContextAwareProcessor(this)); //设置几个疏忽主动拆卸的接口 beanFactory.ignoreDependencyInterface(EnvironmentAware.class); beanFactory.ignoreDependencyInterface(EmbeddedValueResolverAware.class); beanFactory.ignoreDependencyInterface(ResourceLoaderAware.class); beanFactory.ignoreDependencyInterface(ApplicationEventPublisherAware.class); beanFactory.ignoreDependencyInterface(MessageSourceAware.class); beanFactory.ignoreDependencyInterface(ApplicationContextAware.class); //设置了几个主动拆卸的非凡规定 beanFactory.registerResolvableDependency(BeanFactory.class, beanFactory); beanFactory.registerResolvableDependency(ResourceLoader.class, this); beanFactory.registerResolvableDependency(ApplicationEventPublisher.class, this); beanFactory.registerResolvableDependency(ApplicationContext.class, this); //减少了ApplicationListenerDetector次要是检测bean是否实现了ApplicationListener接口 beanFactory.addBeanPostProcessor(new ApplicationListenerDetector(this)); //减少对AspectJ的反对 if (beanFactory.containsBean(LOAD_TIME_WEAVER_BEAN_NAME)) { beanFactory.addBeanPostProcessor(new LoadTimeWeaverAwareProcessor(beanFactory)); // Set a temporary ClassLoader for type matching. beanFactory.setTempClassLoader(new ContextTypeMatchClassLoader(beanFactory.getBeanClassLoader())); } //增加默认的零碎环境bean if (!beanFactory.containsLocalBean(ENVIRONMENT_BEAN_NAME)) { beanFactory.registerSingleton(ENVIRONMENT_BEAN_NAME, getEnvironment()); } if (!beanFactory.containsLocalBean(SYSTEM_PROPERTIES_BEAN_NAME)) { beanFactory.registerSingleton(SYSTEM_PROPERTIES_BEAN_NAME, getEnvironment().getSystemProperties()); } if (!beanFactory.containsLocalBean(SYSTEM_ENVIRONMENT_BEAN_NAME)) { beanFactory.registerSingleton(SYSTEM_ENVIRONMENT_BEAN_NAME, getEnvironment().getSystemEnvironment()); }}
该办法次要做了几个方面的扩大:
- 减少了对SpEL语言的反对
- 减少了对属性编辑器的反对
- 减少了一些内置类,比方EnvironmentAware、MessageSourceAware的信息注入
- 设置了依赖性能可疏忽的接口
- 注册了一些固定依赖的属性
- 减少AspectJ的反对
- 将相干环境变量及属性注册以单例模式注册
BeanFactory的后处理
BeanFactory作为Spring中容器的根底,用于寄存所有曾经加载的bean,为了保障程序的高扩展性,Spring针对BeanFactory做了大量的扩大,比方PostProcessor等都是在这里实现的。
激活注册的BeanFactoryPostProcessor
在学习之前,咱们先理解一下BeanFactoryPostProcessor的用法。BeanFactoryPostProcessor接口和BeanPostProcessor相似,能够对bean的定义进行解决。也就是说,Spring IOC容器容许BeanFactoryPostProcessor在容器实例化任何bean之前读取配置元数据,并能够批改它。BeanFactoryPostProcessor能够配置多个,通过实现Ordered接口设置“order”来管制执行程序。
须要留神的是如果在容器中定义一个BeanFactoryPostProcessor,它仅仅对此容器中的bean进行后置解决。BeanFactoryPostProcessor不会对其余容器中的bean进行后置解决。
1.BeanFactoryPostProcessor的典型利用:PropertySourcesPlaceholderConfigurer
首先咱们来看一下配置文件:
<bean id="hello" class="cn.jack.Hello"> <property name="msg"> <value>${bean.msg}</value> </property></bean>
在外面咱们应用到了变量援用:${bean.msg},这就是Spring的扩散配置,咱们能够在配置文件中配置该属性的值。
application.properties
bean.msg=hi
而后咱们再进行配置文件的配置。
<bean id="helloHandler" class="org.springframework.context.support.PropertySourcesPlaceholderConfigurer"> <property name="locations"> <list> <value>application.properties</value> </list> </property> </bean>
这时候就明确了,咱们通过PreferencesPlaceholderConfigurer中进行获取咱们的配置信息。咱们查看该类能够晓得间接性继承了BeanFactoryPostProcessor接口。
当Spring加载任何实现了这个接口的bean时,都会在bean工厂加载所有bena的配置之后执行postProcessBeanFactory办法。在办法中先后调用了mergeProperties、convertProperties、processProperties这三个办法,别离失去配置、将失去的配置进行转换为适合的类型、最初将配置内容告知BeanFactory。
正是通过实现BeanFactoryPostProcessor,BeanFactory会在实例化任何bean之前取得配置信息,从而可能正确解析bean配置文件中的变量援用。
PropertySourcesPlaceholderConfigurer曾经取代了PropertyPlaceholderConfigurer,因为汇聚了Environment、多个PropertySource。所以它可能管制取值优先级、程序,并且还提供了拜访的办法,前期再想获取也不是问题。
2.应用自定义BeanFactoryPostProcessor
咱们本人实现一个自定义BeanFactoryPostProcessor,去除咱们不想要显示的属性值的性能来展现自定义BeanFactoryPostProcessor的创立及应用,例如bean定义中咱们屏蔽掉‘guapi’、‘shazi’。
<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd"> <bean class="cn.jack.ObscenityRemovingBeanFactoryPostProcessor" id="customBeanFactoryPostProcessor"> <property name="obscenities"> <set> <value>guapi</value> <value>shazi</value> </set> </property> </bean> <bean class="cn.jack.SimpleBean" id="simpleBean"> <property name="userName" value="jack"/> <property name="address" value="guapi"/> <property name="email" value="shazi"/> </bean></beans>
public class SimpleBean { private String userName; private String email; private String address; //getter setter}
public class ObscenityRemovingBeanFactoryPostProcessor implements BeanFactoryPostProcessor { private final Set<String> obscenities; public ObscenityRemovingBeanFactoryPostProcessor() { this.obscenities = new HashSet<>(); } /** * 将所有bean 的参数中含有 obscenities 汇合中的值进行屏蔽 */ @Override public void postProcessBeanFactory(ConfigurableListableBeanFactory beanFactory) throws BeansException { String[] beanNames = beanFactory.getBeanDefinitionNames(); for (String beanName : beanNames) { final BeanDefinition beanDefinition = beanFactory.getBeanDefinition(beanName); StringValueResolver valueResolver = strVal -> { if (isObscene(strVal)){ return "*****"; } return strVal; }; final BeanDefinitionVisitor beanDefinitionVisitor = new BeanDefinitionVisitor(valueResolver); beanDefinitionVisitor.visitBeanDefinition(beanDefinition); } } public boolean isObscene(Object value){ String potentialObscenity = value.toString().toUpperCase(); return this.obscenities.contains(potentialObscenity); } public void setObscenities(Set<String> obscenities){ this.obscenities.clear(); for (String obscenity : obscenities) { this.obscenities.add(obscenity.toUpperCase()); } }}
启动类:
public class Test { public static void main(String[] args) { ApplicationContext ac = new ClassPathXmlApplicationContext("beanFactory.xml"); SimpleBean simpleBean = (SimpleBean) ac.getBean("simpleBean"); System.out.println(simpleBean); }}
输入后果:
SimpleBean{userName='jack', email='*****', address='*****'}
咱们通过ObscenityRemovingBeanFactoryPostProcessor咱们很好的屏蔽掉了咱们不想要显示的属性。
激活BeanFactoryPostProcessor
咱们在理解了BeanFactoryPostProcessor的用法之后就能够持续回到咱们的refresh办法中持续钻研源码了。
进入invokeBeanFactoryPostProcessors办法中。
protected void invokeBeanFactoryPostProcessors(ConfigurableListableBeanFactory beanFactory) { PostProcessorRegistrationDelegate.invokeBeanFactoryPostProcessors(beanFactory, getBeanFactoryPostProcessors()); // Detect a LoadTimeWeaver and prepare for weaving, if found in the meantime // (e.g. through an @Bean method registered by ConfigurationClassPostProcessor) if (beanFactory.getTempClassLoader() == null && beanFactory.containsBean(LOAD_TIME_WEAVER_BEAN_NAME)) { beanFactory.addBeanPostProcessor(new LoadTimeWeaverAwareProcessor(beanFactory)); beanFactory.setTempClassLoader(new ContextTypeMatchClassLoader(beanFactory.getBeanClassLoader())); }}
咱们持续进入具体重载办法中invokeBeanFactoryPostProcessors。
public static void invokeBeanFactoryPostProcessors( ConfigurableListableBeanFactory beanFactory, List<BeanFactoryPostProcessor> beanFactoryPostProcessors) { // 将曾经执行过的BeanFactoryPostProcessor存储在processedBeans,避免反复执行 Set<String> processedBeans = new HashSet<>(); //对BeanDefinitionRegistry类型进行解决 if (beanFactory instanceof BeanDefinitionRegistry) { BeanDefinitionRegistry registry = (BeanDefinitionRegistry) beanFactory; // 用来寄存BeanFactoryPostProcessor对象 List<BeanFactoryPostProcessor> regularPostProcessors = new ArrayList<>(); // 用来寄存BeanDefinitionRegistryPostProcessor对象 // 不便对立执行实现了BeanDefinitionRegistryPostProcessor接口父类的办法 List<BeanDefinitionRegistryPostProcessor> registryProcessors = new ArrayList<>(); // 解决内部定义的BeanFactoryPostProcessor,将BeanDefinitionRegistryPostProcessor与BeanFactoryPostProcessor辨别开 for (BeanFactoryPostProcessor postProcessor : beanFactoryPostProcessors) { if (postProcessor instanceof BeanDefinitionRegistryPostProcessor) { BeanDefinitionRegistryPostProcessor registryProcessor = (BeanDefinitionRegistryPostProcessor) postProcessor; //对于BeanDefinitionRegistryPostProcessor类型,须要先调用此办法,再增加到汇合中 registryProcessor.postProcessBeanDefinitionRegistry(registry); registryProcessors.add(registryProcessor); } else { //记录惯例BeanFactoryPostProcessor regularPostProcessors.add(postProcessor); } } //寄存以后须要执行的BeanDefinitionRegistryPostProcessor List<BeanDefinitionRegistryPostProcessor> currentRegistryProcessors = new ArrayList<>(); // 调用实现 PriorityOrdered 的 BeanDefinitionRegistryPostProcessor。 // 获取所有实现了BeanDefinitionRegistryPostProcessor接口的类名 String[] postProcessorNames = beanFactory.getBeanNamesForType(BeanDefinitionRegistryPostProcessor.class, true, false); for (String ppName : postProcessorNames) { //判断以后类是否实现了PriorityOrdered接口 if (beanFactory.isTypeMatch(ppName, PriorityOrdered.class)) { //将BeanDefinitionRegistryPostProcessor类型存入currentRegistryProcessors中 currentRegistryProcessors.add(beanFactory.getBean(ppName, BeanDefinitionRegistryPostProcessor.class)); // 提前寄存到processedBeans,防止反复执行,然而此处还未执行 processedBeans.add(ppName); } } //对currentRegistryProcessors汇合中的BeanDefinitionRegistryPostProcessor类型进行排序 sortPostProcessors(currentRegistryProcessors, beanFactory); // 增加到registryProcessors汇合,用于后续执行父接口的postProcessBeanFactory办法 registryProcessors.addAll(currentRegistryProcessors); // 遍历汇合,执行BeanDefinitionRegistryPostProcessor.postProcessBeanDefinitionRegistry()办法 invokeBeanDefinitionRegistryPostProcessors(currentRegistryProcessors, registry); //执行结束后清空该汇合 currentRegistryProcessors.clear(); // 接着,调用实现 Ordered 的 BeanDefinitionRegistryPostProcessors // 这里再次获取BeanDefinitionRegistryPostProcessor,是因为有可能在下面办法执行过程中增加了BeanDefinitionRegistryPostProcessor // 而上面解决BeanFactoryPostProcessor的时候又不须要反复获取了是为什么呢? // 因为增加BeanFactoryPostProcessor与BeanDefinitionRegistryPostProcessor只能在BeanDefinitionRegistryPostProcessor中增加,在BeanFactoryPostProcessor是无奈增加的 for (String ppName : postProcessorNames) { // 判断以后bean没有被执行过,并且实现了Ordered接口 if (!processedBeans.contains(ppName) && beanFactory.isTypeMatch(ppName, Ordered.class)) { //如果BeanFactory中没有该Bean则会去创立该Bean currentRegistryProcessors.add(beanFactory.getBean(ppName, BeanDefinitionRegistryPostProcessor.class)); processedBeans.add(ppName); } } sortPostProcessors(currentRegistryProcessors, beanFactory); registryProcessors.addAll(currentRegistryProcessors); invokeBeanDefinitionRegistryPostProcessors(currentRegistryProcessors, registry); currentRegistryProcessors.clear(); //最初解决没有实现Ordered与PriorityOrdered接口的BeanDefinitionRegistryPostProcessor boolean reiterate = true; while (reiterate) { reiterate = false; // 再次获取BeanDefinitionRegistryPostProcessor postProcessorNames = beanFactory.getBeanNamesForType(BeanDefinitionRegistryPostProcessor.class, true, false); for (String ppName : postProcessorNames) { if (!processedBeans.contains(ppName)) { // 将本次要执行的BeanDefinitionRegistryPostProcessor寄存到currentRegistryProcessors currentRegistryProcessors.add(beanFactory.getBean(ppName, BeanDefinitionRegistryPostProcessor.class)); processedBeans.add(ppName); reiterate = true; } } sortPostProcessors(currentRegistryProcessors, beanFactory); registryProcessors.addAll(currentRegistryProcessors); invokeBeanDefinitionRegistryPostProcessors(currentRegistryProcessors, registry); currentRegistryProcessors.clear(); } //当初,调用到目前为止解决的所有处理器的 postProcessBeanFactory 回调。 invokeBeanFactoryPostProcessors(registryProcessors, beanFactory); invokeBeanFactoryPostProcessors(regularPostProcessors, beanFactory); } else { // BeanFactory如果不归属于BeanDefinitionRegistry类型,则间接执行beanFactoryPostProcessor invokeBeanFactoryPostProcessors(beanFactoryPostProcessors, beanFactory); } String[] postProcessorNames = beanFactory.getBeanNamesForType(BeanFactoryPostProcessor.class, true, false); // 用于寄存实现了priorityOrdered接口的BeanFactoryPostProcessor List<BeanFactoryPostProcessor> priorityOrderedPostProcessors = new ArrayList<>(); // 用于寄存实现了ordered接口的BeanFactoryPostProcessor名称 List<String> orderedPostProcessorNames = new ArrayList<>(); // 用于寄存无排序的BeanFactoryPostProcessor名称 List<String> nonOrderedPostProcessorNames = new ArrayList<>(); for (String ppName : postProcessorNames) { // 如果曾经执行过了,则不做解决 if (processedBeans.contains(ppName)) { // skip - already processed in first phase above } // 如果实现了PriorityOrdered 则增加 else if (beanFactory.isTypeMatch(ppName, PriorityOrdered.class)) { priorityOrderedPostProcessors.add(beanFactory.getBean(ppName, BeanFactoryPostProcessor.class)); } // 如果实现了Ordered 则增加 else if (beanFactory.isTypeMatch(ppName, Ordered.class)) { orderedPostProcessorNames.add(ppName); } //如果没有排序则增加到指定汇合 else { nonOrderedPostProcessorNames.add(ppName); } } // 首先调用实现 PriorityOrdered 的 BeanFactoryPostProcessor。 sortPostProcessors(priorityOrderedPostProcessors, beanFactory); invokeBeanFactoryPostProcessors(priorityOrderedPostProcessors, beanFactory); // 而后调用实现 Ordered 的 BeanFactoryPostProcessors。 List<BeanFactoryPostProcessor> orderedPostProcessors = new ArrayList<>(orderedPostProcessorNames.size()); for (String postProcessorName : orderedPostProcessorNames) { orderedPostProcessors.add(beanFactory.getBean(postProcessorName, BeanFactoryPostProcessor.class)); } sortPostProcessors(orderedPostProcessors, beanFactory); invokeBeanFactoryPostProcessors(orderedPostProcessors, beanFactory); // 最初调用其余没有排序的 BeanFactoryPostProcessor。 List<BeanFactoryPostProcessor> nonOrderedPostProcessors = new ArrayList<>(nonOrderedPostProcessorNames.size()); for (String postProcessorName : nonOrderedPostProcessorNames) { nonOrderedPostProcessors.add(beanFactory.getBean(postProcessorName, BeanFactoryPostProcessor.class)); } invokeBeanFactoryPostProcessors(nonOrderedPostProcessors, beanFactory); // 清空缓存 beanFactory.clearMetadataCache();}
注册BeanPostProcessor
理解了BeanFactoryPostProcessors的调用后,咱们当初来理解下BeanPostProcessor,这里仅仅是注册,并不是调用。真正的调用在bean实例化阶段进行的。
在BeanFactory中并没有实现后处理器的主动注册性能,所以在调用的时候如果没有进行被动注册则是不可能应用的。然而在ApplicationContext中增加了被动注册性能。
比方自定义这样的后处理器:
public class MyInstantiationAwareBeanPostProcessor implements InstantiationAwareBeanPostProcessor { @Override public Object postProcessBeforeInstantiation(Class<?> beanClass, String beanName) throws BeansException { System.out.println("==="); return null; }}
<bean class="cn.jack.MyInstantiationAwareBeanPostProcessor"/>
在应用ApplicationContext形式获取bean的时候会在获取之前打印出“===”,在BeanFactory形式进行bean的加载是不会有该打印的。
这个个性就是在registerBeanPostProcessors中实现的。
public static void registerBeanPostProcessors( ConfigurableListableBeanFactory beanFactory, AbstractApplicationContext applicationContext) { //获取所有实现BeanPostProcessor接口的类 String[] postProcessorNames = beanFactory.getBeanNamesForType(BeanPostProcessor.class, true, false); //注册一个 BeanPostProcessorChecker,用来记录 bean 在 BeanPostProcessor 实例化时的信息 int beanProcessorTargetCount = beanFactory.getBeanPostProcessorCount() + 1 + postProcessorNames.length; beanFactory.addBeanPostProcessor(new BeanPostProcessorChecker(beanFactory, beanProcessorTargetCount)); //辨别实现不同接口的 BeanPostProcessors List<BeanPostProcessor> priorityOrderedPostProcessors = new ArrayList<>(); List<BeanPostProcessor> internalPostProcessors = new ArrayList<>(); List<String> orderedPostProcessorNames = new ArrayList<>(); List<String> nonOrderedPostProcessorNames = new ArrayList<>(); //依据不同类型进行add for (String ppName : postProcessorNames) { if (beanFactory.isTypeMatch(ppName, PriorityOrdered.class)) { BeanPostProcessor pp = beanFactory.getBean(ppName, BeanPostProcessor.class); priorityOrderedPostProcessors.add(pp); if (pp instanceof MergedBeanDefinitionPostProcessor) { internalPostProcessors.add(pp); } } else if (beanFactory.isTypeMatch(ppName, Ordered.class)) { orderedPostProcessorNames.add(ppName); } else { nonOrderedPostProcessorNames.add(ppName); } } // 排序后执行注册实现了 PriorityOrdered 的 BeanPostProcessors sortPostProcessors(priorityOrderedPostProcessors, beanFactory); registerBeanPostProcessors(beanFactory, priorityOrderedPostProcessors); //注册实现Ordered接口的BeanPostProcessors List<BeanPostProcessor> orderedPostProcessors = new ArrayList<>(orderedPostProcessorNames.size()); for (String ppName : orderedPostProcessorNames) { //拿到ppName对应的BeanPostProcessor实例对象 BeanPostProcessor pp = beanFactory.getBean(ppName, BeanPostProcessor.class); //将ppName对应的BeanPostProcessor实例对象增加到orderedPostProcessors, 筹备执行注册 orderedPostProcessors.add(pp); if (pp instanceof MergedBeanDefinitionPostProcessor) { //如果ppName对应的bean实例也实现了MergedBeanDefinitionPostProcessor接口,则增加到该汇合中 internalPostProcessors.add(pp); } } //对orderedPostProcessors进行排序并注册 sortPostProcessors(orderedPostProcessors, beanFactory); registerBeanPostProcessors(beanFactory, orderedPostProcessors); //注册所有惯例的BeanPostProcessors,过程同上 List<BeanPostProcessor> nonOrderedPostProcessors = new ArrayList<>(nonOrderedPostProcessorNames.size()); for (String ppName : nonOrderedPostProcessorNames) { BeanPostProcessor pp = beanFactory.getBean(ppName, BeanPostProcessor.class); nonOrderedPostProcessors.add(pp); if (pp instanceof MergedBeanDefinitionPostProcessor) { internalPostProcessors.add(pp); } } registerBeanPostProcessors(beanFactory, nonOrderedPostProcessors); //注册所有mergedBeanDefinitionPostProcessor类型的BeanPostProcessor,并非反复注册 //在beanFactory.addBeanPostProcessor中会先移除曾经存在的BeanPostProcessor sortPostProcessors(internalPostProcessors, beanFactory); registerBeanPostProcessors(beanFactory, internalPostProcessors); // 增加ApplicationListener探测器 beanFactory.addBeanPostProcessor(new ApplicationListenerDetector(applicationContext));}
初始化音讯资源
在initMessageSource中次要性能是提取配置文件中的messageSource,并将其记录在Spring容器中,也就是ApplicationContext中。如果用户未设置资源文件的话,则获取Spring默认的配置delegatingMessageSource。
protected void initMessageSource() { ConfigurableListableBeanFactory beanFactory = getBeanFactory(); // Bean 的名称必须要是 messageSource if (beanFactory.containsLocalBean(MESSAGE_SOURCE_BEAN_NAME)) { //MESSAGE_SOURCE_BEAN_NAME = messageSource this.messageSource = beanFactory.getBean(MESSAGE_SOURCE_BEAN_NAME, MessageSource.class); // Make MessageSource aware of parent MessageSource. if (this.parent != null && this.messageSource instanceof HierarchicalMessageSource) { HierarchicalMessageSource hms = (HierarchicalMessageSource) this.messageSource; if (hms.getParentMessageSource() == null) { // Only set parent context as parent MessageSource if no parent MessageSource // registered already. hms.setParentMessageSource(getInternalParentMessageSource()); } } if (logger.isTraceEnabled()) { logger.trace("Using MessageSource [" + this.messageSource + "]"); } } else { //如果用户并没有定义配置文件,那么应用长期的DelegatingMessageSource以便于作为调用getMessage的返回 DelegatingMessageSource dms = new DelegatingMessageSource(); dms.setParentMessageSource(getInternalParentMessageSource()); this.messageSource = dms; beanFactory.registerSingleton(MESSAGE_SOURCE_BEAN_NAME, this.messageSource); if (logger.isTraceEnabled()) { logger.trace("No '" + MESSAGE_SOURCE_BEAN_NAME + "' bean, using [" + this.messageSource + "]"); } }}
这里规定资源文件必须为messageSource,否则就会获取不到自定义资源配置。
初始化ApplicationEventMulticaster
initApplicationEventMulticaster办法实现比较简单,存在两种状况:
- 如果用户自定义了事件播送器,那么就是用用户自定义的事件播送器
- 如果用户没有自定义事件播送器,那么应用默认的ApplicationEventMulticaster
protected void initApplicationEventMulticaster() { ConfigurableListableBeanFactory beanFactory = getBeanFactory(); //判断容器中是否存在BeanDefinitionName为applicationEventMulticaster的bd,也就是自定义的事件监听多路播送器,必须实现ApplicationEventMulticaster接口 if (beanFactory.containsLocalBean(APPLICATION_EVENT_MULTICASTER_BEAN_NAME)) { this.applicationEventMulticaster = beanFactory.getBean(APPLICATION_EVENT_MULTICASTER_BEAN_NAME, ApplicationEventMulticaster.class); if (logger.isTraceEnabled()) { logger.trace("Using ApplicationEventMulticaster [" + this.applicationEventMulticaster + "]"); } } else { //如果没有,则默认采纳SimpleApplicationEventMulticaster this.applicationEventMulticaster = new SimpleApplicationEventMulticaster(beanFactory); beanFactory.registerSingleton(APPLICATION_EVENT_MULTICASTER_BEAN_NAME, this.applicationEventMulticaster); if (logger.isTraceEnabled()) { logger.trace("No '" + APPLICATION_EVENT_MULTICASTER_BEAN_NAME + "' bean, using " + "[" + this.applicationEventMulticaster.getClass().getSimpleName() + "]"); } }}
最初,作为播送器,肯定是用于寄存监听器并在适合的时候调用监听器,咱们进入默认的播送器实现类SimpleApplicationEventMulticaster中看一下。
看到如下办法:
public void multicastEvent(final ApplicationEvent event, @Nullable ResolvableType eventType) { ResolvableType type = (eventType != null ? eventType : resolveDefaultEventType(event)); Executor executor = getTaskExecutor(); for (ApplicationListener<?> listener : getApplicationListeners(event, type)) { if (executor != null) { executor.execute(() -> invokeListener(listener, event)); } else { invokeListener(listener, event); } }}
能够推断,当产生Spring事件的时候会默认应用SimpleApplicationEventMulticaster的multicastEvent来播送事件,遍历所有监听器,并应用监听器中的onApplicationEvent办法来进行监听器的解决。而对于每个监听器来说其实都能够获取到产生的事件,然而是否进行解决则由事件监听器决定。
注册监听器
咱们重复提到了监听器,咱们接下来看一下Spring注册监听器的时候又做了哪些逻辑操作?
protected void registerListeners() { // 首先注册动态的指定的监听器,注册的是非凡的事件监听器,而不是配置中的bean for (ApplicationListener<?> listener : getApplicationListeners()) { getApplicationEventMulticaster().addApplicationListener(listener); } // 这里不会初始化FactoryBean,咱们须要保留所有的一般bean // 不会实例化这些bean,让后置处理器能够感知到它们 String[] listenerBeanNames = getBeanNamesForType(ApplicationListener.class, true, false); for (String listenerBeanName : listenerBeanNames) { getApplicationEventMulticaster().addApplicationListenerBean(listenerBeanName); } // 当初有了事件播送组,公布之前的利用事件 Set<ApplicationEvent> earlyEventsToProcess = this.earlyApplicationEvents; this.earlyApplicationEvents = null; if (earlyEventsToProcess != null) { for (ApplicationEvent earlyEvent : earlyEventsToProcess) { getApplicationEventMulticaster().multicastEvent(earlyEvent); } }}
只是将一些非凡的监听器注册到播送组中,那些在bean配置文件中实现了ApplicationListener接口的类还没有实例化,所以此时只是将name保留到了播送组中,将这些监听器注册到播送组中的操作时在bean的后置处理器中实现的,那时候bean的实例化曾经实现了。
初始化非提早加载单例
实现BeanFactory的初始化工作,其中包含ConversionService的设置、配置解冻以及非提早加载的bean的初始化工作。
protected void finishBeanFactoryInitialization(ConfigurableListableBeanFactory beanFactory) { // 初始化此上下文的转换服务 if (beanFactory.containsBean(CONVERSION_SERVICE_BEAN_NAME) && beanFactory.isTypeMatch(CONVERSION_SERVICE_BEAN_NAME, ConversionService.class)) { beanFactory.setConversionService( beanFactory.getBean(CONVERSION_SERVICE_BEAN_NAME, ConversionService.class)); } // 如果beanFactory之前没有注册解析器,则注册默认的解析器,例如${}解析成真正的属性:次要用于注解属性值的解析 if (!beanFactory.hasEmbeddedValueResolver()) { beanFactory.addEmbeddedValueResolver(strVal -> getEnvironment().resolvePlaceholders(strVal)); } //解决 @EnableLoadTimeWeaving 或 <context:load-time-weaver/> 标记的类 String[] weaverAwareNames = beanFactory.getBeanNamesForType(LoadTimeWeaverAware.class, false, false); for (String weaverAwareName : weaverAwareNames) { getBean(weaverAwareName); } //长期类加载器设置为空 beanFactory.setTempClassLoader(null); //解冻所有的bean定义,阐明注册的bean定义将不被批改或者进一步解决 beanFactory.freezeConfiguration(); //初始化剩下的单例实例(非惰性) beanFactory.preInstantiateSingletons();}
首先,咱们先理解下ConversionService类所提供的作用。
1.ConversionService的设置
之前咱们提到能够用自定义类型转换器把String类型转换为Date,在Spring中也提供了应用Converter来进行转换。
2.解冻配置
解冻所有的bean定义,阐明注册的bean定义将不被批改或者进行任何一步的解决。
public void freezeConfiguration() { this.configurationFrozen = true; this.frozenBeanDefinitionNames = StringUtils.toStringArray(this.beanDefinitionNames);}
3.初始化提早加载
ApplicationContext实现的默认行为就是在启动时将所有单例bean提前进行实例化。提前实例化也就意味着作为初始化过程的一部分,ApplicationContext实例会创立并配置所有单例bean,这个实例化过程就是在finishBeanFactoryInitialization办法中的preInstantiateSingletons办法中实现的。
public void preInstantiateSingletons() throws BeansException { if (logger.isTraceEnabled()) { logger.trace("Pre-instantiating singletons in " + this); } //创立beanDefinitionNames的正本beanNames用于后续的遍历,以容许init等办法注册新的bean定义 List<String> beanNames = new ArrayList<>(this.beanDefinitionNames); //遍历beanNames,触发所有非懒加载单例bean的初始化 for (String beanName : beanNames) { //获取beanName对应的MergedBeanDefinition RootBeanDefinition bd = getMergedLocalBeanDefinition(beanName); //bd对应的不是抽象类 && 并且是单例 && 并且不是懒加载 if (!bd.isAbstract() && bd.isSingleton() && !bd.isLazyInit()) { //判断是否为FactoryBean if (isFactoryBean(beanName)) { //通过前缀&和beanName拿到Bean Object bean = getBean(FACTORY_BEAN_PREFIX + beanName); //如果为FactoryBean if (bean instanceof FactoryBean) { final FactoryBean<?> factory = (FactoryBean<?>) bean; //判断这个FactoryBean是否心愿急迫的初始化 boolean isEagerInit; if (System.getSecurityManager() != null && factory instanceof SmartFactoryBean) { isEagerInit = AccessController.doPrivileged((PrivilegedAction<Boolean>) ((SmartFactoryBean<?>) factory)::isEagerInit, getAccessControlContext()); } else { isEagerInit = (factory instanceof SmartFactoryBean && ((SmartFactoryBean<?>) factory).isEagerInit()); } //如果心愿急迫的初始化,则通过beanName获取bean实例 if (isEagerInit) { getBean(beanName); } } } else { //如果beanName对应的bean不是FactoryBean,只是一般Bean,通过beanName获取bean实例 getBean(beanName); } } } //遍历beanNames,触发所有SmartInitializingSingleton的后初始化回调 for (String beanName : beanNames) { //拿到beanName对应的bean实例 Object singletonInstance = getSingleton(beanName); //判断singletonInstance是否实现了SmartInitializingSingleton接口 if (singletonInstance instanceof SmartInitializingSingleton) { final SmartInitializingSingleton smartSingleton = (SmartInitializingSingleton) singletonInstance; //触发SmartInitializingSingleton实现类的afterSingletonsInstantiated办法 if (System.getSecurityManager() != null) { AccessController.doPrivileged((PrivilegedAction<Object>) () -> { smartSingleton.afterSingletonsInstantiated(); return null; }, getAccessControlContext()); } else { smartSingleton.afterSingletonsInstantiated(); } } }}
finishRefresh
在Spring中提供了Lifecycle接口,该接口蕴含start/stop办法,实现此接口后Spring会保障在启动时候调用其start办法开始申明周期,并在Spring敞开时候调用stop办法来完结申明周期。通常用来配置后台程序,在启动后始终运行(比方MQ)而ApplicationContext最初一步finishRefresh办法就是实现这一性能。
protected void finishRefresh() { //革除资源缓存 clearResourceCaches(); //1.为此上下文初始化生命周期处理器 initLifecycleProcessor(); //2.首先将刷新结束事件流传到生命周期处理器(触发isAutoStartup办法返回true的SmartLifecycle的start办法) getLifecycleProcessor().onRefresh(); //3.推送上下文刷新结束事件到相应的监听器 publishEvent(new ContextRefreshedEvent(this)); // Participate in LiveBeansView MBean, if active. LiveBeansView.registerApplicationContext(this);}
1.initLifecycleProcessor
当ApplicationContext启动或进行时,它会通过LifecycleProcessor来和所有申明的bean的周期做状态更新,而在LifecycleProcessor的应用前首先进行初始化。
protected void initLifecycleProcessor() { ConfigurableListableBeanFactory beanFactory = getBeanFactory(); //判断BeanFactory是否曾经存在生命周期处理器(beanName=lifecycleProcessor) if (beanFactory.containsLocalBean(LIFECYCLE_PROCESSOR_BEAN_NAME)) { this.lifecycleProcessor = beanFactory.getBean(LIFECYCLE_PROCESSOR_BEAN_NAME, LifecycleProcessor.class); if (logger.isTraceEnabled()) { logger.trace("Using LifecycleProcessor [" + this.lifecycleProcessor + "]"); } } else { //如果不存在,则应用DefaultLifecycleProcessor DefaultLifecycleProcessor defaultProcessor = new DefaultLifecycleProcessor(); defaultProcessor.setBeanFactory(beanFactory); this.lifecycleProcessor = defaultProcessor; // 并将DefaultLifecycleProcessor作为默认的生命周期处理器,注册到BeanFactory中 beanFactory.registerSingleton(LIFECYCLE_PROCESSOR_BEAN_NAME, this.lifecycleProcessor); if (logger.isTraceEnabled()) { logger.trace("No '" + LIFECYCLE_PROCESSOR_BEAN_NAME + "' bean, using " + "[" + this.lifecycleProcessor.getClass().getSimpleName() + "]"); } }}
2.onRefresh
启动所有实现了Lifecycle接口的bean
public void onRefresh() { startBeans(true); this.running = true;}
private void startBeans(boolean autoStartupOnly) { Map<String, Lifecycle> lifecycleBeans = getLifecycleBeans(); Map<Integer, LifecycleGroup> phases = new HashMap<>(); lifecycleBeans.forEach((beanName, bean) -> { if (!autoStartupOnly || (bean instanceof SmartLifecycle && ((SmartLifecycle) bean).isAutoStartup())) { int phase = getPhase(bean); LifecycleGroup group = phases.get(phase); if (group == null) { group = new LifecycleGroup(phase, this.timeoutPerShutdownPhase, lifecycleBeans, autoStartupOnly); phases.put(phase, group); } group.add(beanName, bean); } }); if (!phases.isEmpty()) { List<Integer> keys = new ArrayList<>(phases.keySet()); Collections.sort(keys); for (Integer key : keys) { phases.get(key).start(); } }}
3.publishEvent
当实现ApplicationContext初始化的时候,要通过Spring中的公布机制来收回ContextRefreshedEvent事件,以保障对应的监听器能够做进一步的逻辑解决。
protected void publishEvent(Object event, @Nullable ResolvableType eventType) { Assert.notNull(event, "Event must not be null"); //如有必要,将事件装璜为ApplicationEvent ApplicationEvent applicationEvent; if (event instanceof ApplicationEvent) { applicationEvent = (ApplicationEvent) event; } else { applicationEvent = new PayloadApplicationEvent<>(this, event); if (eventType == null) { eventType = ((PayloadApplicationEvent<?>) applicationEvent).getResolvableType(); } } // Multicast right now if possible - or lazily once the multicaster is initialized if (this.earlyApplicationEvents != null) { this.earlyApplicationEvents.add(applicationEvent); } else { //应用事件播送器播送事件到相应的监听器 getApplicationEventMulticaster().multicastEvent(applicationEvent, eventType); } //通过parent公布事件 if (this.parent != null) { if (this.parent instanceof AbstractApplicationContext) { ((AbstractApplicationContext) this.parent).publishEvent(event, eventType); } else { this.parent.publishEvent(event); } }}
到这里,refresh办法就解析实现了。下一步就是AOP了。