kafka学习
windows 上的kafka学习和装置相干的问题
一. 下载kafka
kafka应用java实现并且官网提供了windows的反对,所以间接下载就完事了,将其解压到一个文件夹下,如我在D:\kafka,这里版本是3.20,其余版本可能会有点不同.整体门路如下,别离是
- bin: 提供的一些曾经写好了的shell命令文件和windows上面的bat文件
- config: 一些曾经配置好的文件,如kafka server的配置,zookeeper的配置,consumer和producer的配置
- libs: jar包和一些依赖
- licenses: 开源协定证书
二. 启动kafka 单实例
激动人心的时刻来了,咱们下载了文件,装置了jdk环境(个别都会有环境吧),而后设置properties文件,在这里我轻易贴一下要留神的properties文件,定义了前面须要用的端口:
# file:config/server.propertieslisteners=PLAINTEXT://127.0.0.1:9092 # 指定端口log.dirs=E:\\kafka-logs-1 # 我感觉指定个文件夹比拟好zookeeper.connect=localhost:2181 # 指定zookeeper服务器
# file:config/zookeeper.propertiesdataDir=E:\\zookeeper# the port at which the clients will connectclientPort=2181
1. 启动zookeeper
.\bin\windows\zookeeper-server-start.bat .\config\zookeeper.properties# 如果应用wsl或者bash上面.\bin\zookeeper-server-start.sh .\config\zookeeper.properties
2. 启动kafka
.\bin\windows\kafka-server-start.bat .\config\server.properties# 如果应用wsl或者bash上面.\bin\kafka-server-start.sh .\config\zookeeper.properties
这样子就算是启动胜利了,并且能够看到启动的实例连贯的zookeeper和broker提供的ip.
3. 创立topic
# 老版本应用zookeeper-server 确定对应的kafka集群,然而新版本应用bootstrap-server确定连贯的集群.\bin\windows\kafka-topics --create --bootstrap-server 127.0.0.1:9092 --topic test
咱们查看当初的集群里的topic状况能够应用上面的命令:
.\bin\windows\kafka-topics --describe --bootstrap-server 127.0.0.1:9092
能够看到自身实际上存在一个top叫做__consumer_=offsets去保留对应的consumer的offeset数据
4. 向topic写入数据和读取数据
.\bin\windows\kafka-console-producer --bootstrap-server 127.0.0.1:9092 --topic test1
输出日志数据,之后再读出来
.\bin\windows\kafka-console-consumer.bat --topic test1 --bootstrap-server 127.0.0.1:9093 # --from-beginning 能够看到当初还保留的音讯
那么至此咱们就实现了最根本的kafka的操作,创立主题\写入数据\读出数据
三. 编写本人的代码
1. 编写本人的producer
依据kafka自身的教程,kafka-clients自身提供了三个send模式,别离是阻塞和非阻塞以及实现好了的future回调.
package com.lixiande.kafkaLearn;import org.apache.kafka.clients.producer.Callback;import org.apache.kafka.clients.producer.KafkaProducer;import org.apache.kafka.clients.producer.ProducerRecord;import org.apache.kafka.clients.producer.RecordMetadata;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import java.util.Date;import java.util.Properties;import java.util.concurrent.Future;public class Producer { Logger logger = LoggerFactory.getLogger(Producer.class); private Properties kafkaProducerProps; private KafkaProducer kafkaProducer; public static void main(String[] args) { Producer producer = new Producer(); try { while (true) { producer.SendCallBack("test", "what fuck about key value", "this is nothing about kafka and send with Callback" + new Date().toString()); producer.SendBlock("test", "what fuck about key value", "this is nothing about kafka and send by blocking" + new Date().toString()); producer.SendAsync("test", "what fuck about key value", "this is nothing about kafka and send by async" + new Date().toString()); } } finally { producer.kafkaProducer.close(); } } public void SendBlock(String topic, String key, String value) { try { System.out.println("block send :" + kafkaProducer.send(new ProducerRecord<String, String>(topic, key, value)).get().toString()); } catch (Exception e) { e.printStackTrace(); } } public Future SendAsync(String topic, String key, String value) { return kafkaProducer.send(new ProducerRecord<String, String>(topic, key, value)); } public void SendCallBack(String topic, String key, String value) { kafkaProducer.send(new ProducerRecord<String, String>(topic, key, value), new Callback() { @Override public void onCompletion(RecordMetadata recordMetadata, Exception e) { System.out.println(recordMetadata.toString()); if (e != null) System.out.println(e.toString()); } }); } public Producer() { kafkaProducerProps = new Properties(); kafkaProducerProps.put("key.serializer", org.apache.kafka.common.serialization.StringSerializer.class.getName()); kafkaProducerProps.put("value.serializer", org.apache.kafka.common.serialization.StringSerializer.class.getName()); kafkaProducerProps.put("bootstrap.servers", "127.0.0.1:9092"); kafkaProducer = new KafkaProducer<String, String>(kafkaProducerProps); }}
2.编写本人的consumer
同样的consumer也是能够有很多种形式,比方订阅topic,订阅topic外面的某些partition,以及订阅正则匹配的topics
package com.lixiande.kafkaLearn;import org.apache.kafka.clients.consumer.ConsumerRecord;import org.apache.kafka.clients.consumer.ConsumerRecords;import org.apache.kafka.clients.consumer.KafkaConsumer;import org.apache.kafka.common.PartitionInfo;import org.apache.kafka.common.errors.WakeupException;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import java.util.*;public class Consumer { private static Logger logger = LoggerFactory.getLogger(Consumer.class); private KafkaConsumer kafkaConsumer; private Properties kafkaConsumerProps; private Map<String, Integer> consumeMap; public static void main(String[] args) { Consumer consumer = new Consumer(); Thread mainThread = Thread.currentThread(); Runtime.getRuntime().addShutdownHook(new Thread(() -> { System.out.println("consumer starting exiting"); consumer.kafkaConsumer.wakeup(); try { mainThread.join(); } catch (InterruptedException e) { e.printStackTrace(); } })); consumer.listen(); } public Consumer() { kafkaConsumerProps = new Properties(); kafkaConsumerProps.put("bootstrap.servers", "127.0.0.1:9092"); kafkaConsumerProps.put("key.deserializer", org.apache.kafka.common.serialization.StringDeserializer.class.getName()); kafkaConsumerProps.put("value.deserializer", org.apache.kafka.common.serialization.StringDeserializer.class.getName()); kafkaConsumerProps.put("group.id", "loopConsumer"); kafkaConsumer = new KafkaConsumer<String, String>(kafkaConsumerProps); kafkaConsumer.subscribe(Collections.singletonList("test")); // kafkaConsumer.subscribe(Pattern.compile("test*")); // 也能够订阅所有的test*的主题 List<PartitionInfo> partitionInfoList = kafkaConsumer.partitionsFor("test"); // XXX:这里能够用于获取特定的topic的分区,从而实现不同的消费者手动调配,而不会走平衡 /* // if (partitionInfoList != null){ // for (PartitionInfo info : partitionInfoList){ // partitions.add(new TopicPartition(info.topic(), info.partition())); // } // kafkaConsumer.assign(partitions); // } */ consumeMap = new HashMap<>(); } public void listen() { try { while (true) { ConsumerRecords<String, String> records = kafkaConsumer.poll(100); for (ConsumerRecord<String, String> record : records) { logger.warn(record.toString()); int updatedCount = 1; if (consumeMap.containsValue(record.value())) { updatedCount = consumeMap.get(record.value()) + 1; } consumeMap.put(record.value(), updatedCount); } System.out.println("\n-------------------------------------------------\n"); System.out.println(consumeMap); System.out.println("\n-------------------------------------------------\n"); consumeMap.clear(); kafkaConsumer.commitAsync(); } } catch (WakeupException e) { } finally { kafkaConsumer.close(); System.out.println("Closed Consumer and we are done"); } }}