给 Print SQL Connector 增加随机取样
Flink 提供了 Print SQL Connector 能够让咱们十分不便的把数据打印到规范输入.有助于咱们测试 SQL 工作,测验数据的正确性.
然而在生产环境中,上游的数据量是十分大的,如果间接把数据输入的话,可能会把规范输入文件打满,造成页面卡死的状况,反而不利于咱们观测数据,所以咱们能够对 Print SQL Connector 进行简略的革新,加一个随机取样的参数控制数据输入.
间接把 Print SQL Connector 相干的代码复制进去.
PrintRateTableSinkFactory
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package flink.stream.connector.print;import org.apache.flink.annotation.Internal;import org.apache.flink.api.common.functions.util.PrintSinkOutputWriter;import org.apache.flink.configuration.ConfigOption;import org.apache.flink.configuration.Configuration;import org.apache.flink.configuration.ReadableConfig;import org.apache.flink.streaming.api.functions.sink.PrintSinkFunction;import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;import org.apache.flink.streaming.api.operators.StreamingRuntimeContext;import org.apache.flink.table.connector.ChangelogMode;import org.apache.flink.table.connector.sink.DynamicTableSink;import org.apache.flink.table.connector.sink.DynamicTableSink.DataStructureConverter;import org.apache.flink.table.connector.sink.SinkFunctionProvider;import org.apache.flink.table.connector.sink.abilities.SupportsPartitioning;import org.apache.flink.table.data.RowData;import org.apache.flink.table.factories.DynamicTableSinkFactory;import org.apache.flink.table.factories.FactoryUtil;import org.apache.flink.table.types.DataType;import javax.annotation.Nullable;import java.util.*;import java.util.concurrent.ThreadLocalRandom;import static flink.stream.connector.print.PrintConnectorOptions.PRINT_RATE;import static org.apache.flink.connector.print.table.PrintConnectorOptions.PRINT_IDENTIFIER;import static org.apache.flink.connector.print.table.PrintConnectorOptions.STANDARD_ERROR;/** * Print table sink factory writing every row to the standard output or standard error stream. It is * designed for: - easy test for streaming job. - very useful in production debugging. * * <p>Four possible format options: {@code PRINT_IDENTIFIER}:taskId> output <- {@code * PRINT_IDENTIFIER} provided, parallelism > 1 {@code PRINT_IDENTIFIER}> output <- {@code * PRINT_IDENTIFIER} provided, parallelism == 1 taskId> output <- no {@code PRINT_IDENTIFIER} * provided, parallelism > 1 output <- no {@code PRINT_IDENTIFIER} provided, parallelism == 1 * * <p>output string format is "$RowKind[f0, f1, f2, ...]", example is: "+I[1, 1]". */@Internalpublic class PrintRateTableSinkFactory implements DynamicTableSinkFactory { // 简略批改 public static final String IDENTIFIER = "print-rate"; @Override public String factoryIdentifier() { return IDENTIFIER; } @Override public Set<ConfigOption<?>> requiredOptions() { return new HashSet<>(); } @Override public Set<ConfigOption<?>> optionalOptions() { Set<ConfigOption<?>> options = new HashSet<>(); options.add(PRINT_IDENTIFIER); options.add(STANDARD_ERROR); options.add(FactoryUtil.SINK_PARALLELISM); // 增加到 options options.add(PRINT_RATE); return options; } @Override public DynamicTableSink createDynamicTableSink(Context context) { FactoryUtil.TableFactoryHelper helper = FactoryUtil.createTableFactoryHelper(this, context); helper.validate(); ReadableConfig options = helper.getOptions(); return new PrintSink( context.getCatalogTable().getResolvedSchema().toPhysicalRowDataType(), context.getCatalogTable().getPartitionKeys(), options.get(PRINT_IDENTIFIER), options.get(STANDARD_ERROR), options.getOptional(FactoryUtil.SINK_PARALLELISM).orElse(null), options.get(PRINT_RATE)); } private static class PrintSink implements DynamicTableSink, SupportsPartitioning { private final DataType type; private String printIdentifier; private final boolean stdErr; private final @Nullable Integer parallelism; private final List<String> partitionKeys; private Map<String, String> staticPartitions = new LinkedHashMap<>(); private @Nullable Float printRate; private PrintSink( DataType type, List<String> partitionKeys, String printIdentifier, boolean stdErr, Integer parallelism, Float printRate) { this.type = type; this.partitionKeys = partitionKeys; this.printIdentifier = printIdentifier; this.stdErr = stdErr; this.parallelism = parallelism; this.printRate = printRate; } @Override public ChangelogMode getChangelogMode(ChangelogMode requestedMode) { return requestedMode; } @Override public SinkRuntimeProvider getSinkRuntimeProvider(Context context) { DataStructureConverter converter = context.createDataStructureConverter(type); staticPartitions.forEach( (key, value) -> { printIdentifier = null != printIdentifier ? printIdentifier + ":" : ""; printIdentifier += key + "=" + value; }); return SinkFunctionProvider.of( new RowDataPrintFunction(converter, printIdentifier, stdErr, printRate), parallelism); } @Override public DynamicTableSink copy() { return new PrintSink(type, partitionKeys, printIdentifier, stdErr, parallelism, printRate); } @Override public String asSummaryString() { return "Print to " + (stdErr ? "System.err" : "System.out"); } @Override public void applyStaticPartition(Map<String, String> partition) { // make it a LinkedHashMap to maintain partition column order staticPartitions = new LinkedHashMap<>(); for (String partitionCol : partitionKeys) { if (partition.containsKey(partitionCol)) { staticPartitions.put(partitionCol, partition.get(partitionCol)); } } } } /** * Implementation of the SinkFunction converting {@link RowData} to string and passing to {@link * PrintSinkFunction}. */ private static class RowDataPrintFunction extends RichSinkFunction<RowData> { private static final long serialVersionUID = 1L; private final DataStructureConverter converter; private final PrintSinkOutputWriter<String> writer; private final Float printRate; private RowDataPrintFunction( DataStructureConverter converter, String printIdentifier, boolean stdErr, Float printRate) { this.converter = converter; this.writer = new PrintSinkOutputWriter<>(printIdentifier, stdErr); this.printRate = printRate; } @Override public void open(Configuration parameters) throws Exception { super.open(parameters); StreamingRuntimeContext context = (StreamingRuntimeContext) getRuntimeContext(); writer.open(context.getIndexOfThisSubtask(), context.getNumberOfParallelSubtasks()); } @Override public void invoke(RowData value, Context context) { if (ThreadLocalRandom.current().nextFloat() < this.printRate) { Object data = converter.toExternal(value); assert data != null; writer.write(data.toString()); } } }}
PrintConnectorOptions
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package flink.stream.connector.print;import org.apache.flink.annotation.PublicEvolving;import org.apache.flink.configuration.ConfigOption;import static org.apache.flink.configuration.ConfigOptions.key;/** Options for the Print sink connector. */@PublicEvolvingpublic class PrintConnectorOptions { public static final ConfigOption<String> PRINT_IDENTIFIER = key("print-identifier") .stringType() .noDefaultValue() .withDescription( "Message that identify print and is prefixed to the output of the value."); public static final ConfigOption<Boolean> STANDARD_ERROR = key("standard-error") .booleanType() .defaultValue(false) .withDescription( "True, if the format should print to standard error instead of standard out."); public static final ConfigOption<Float> PRINT_RATE = key("print-rate") .floatType() .defaultValue(0.0001F) .withDescription( "Controls the printing rate of data"); private PrintConnectorOptions() {}}
首先在 PrintConnectorOptions 配置外面增加 PRINT_RATE 属性,用来管制随机取样,默认值是 0.0001.
而后在 PrintRateTableSinkFactory 中把 connector 的惟一标识符 IDENTIFIER 改成 print-rate,其实不改也是能够的,只是为了和默认的 Print 做辨别.
在 PrintRateTableSinkFactory#optionalOptions 办法外面退出咱们增加的属性 PRINT_RATE.
@Override public Set<ConfigOption<?>> optionalOptions() { Set<ConfigOption<?>> options = new HashSet<>(); options.add(PRINT_IDENTIFIER); options.add(STANDARD_ERROR); options.add(FactoryUtil.SINK_PARALLELISM); options.add(PRINT_RATE); return options; }
而后把这个参数传入到上面的 PrintSink 最初传入到 RowDataPrintFunction 外面,最终在 invoke 办法外面增加随机取样的逻辑.
@Override public void invoke(RowData value, Context context) { if (ThreadLocalRandom.current().nextFloat() < this.printRate) { Object data = converter.toExternal(value); assert data != null; writer.write(data.toString()); } }
到这里代码就批改完了,非常简单,一共不到 10 行代码.
最初还要把 PrintRateTableSinkFactory 增加到 META-INF/services 下的配置文件中,因为 Flink 是用 Java SPI 机制加载这些 connector 的.
最初来测试一下批改后的 connector,先把打完的 jar 包上传到服务器的 flink/lib 目录上面.创立初始化脚本和 SQL 文件.
init.sql
SET 'parallelism.default' = '8';SET 'taskmanager.memory.network.fraction' = '0.01';SET 'pipeline.name' = 'test-print-rate';SET 'sql-client.verbose' = 'true';
test_print_rate.sql
CREATE TABLE kafka_table (name string,age int,city string,ts BIGINT,proctime as PROCTIME(),rt as TO_TIMESTAMP_LTZ(ts, 3),WATERMARK FOR rt AS rt - INTERVAL '5' SECOND)WITH ( 'connector' = 'kafka', 'topic' = 'test', 'properties.bootstrap.servers' = 'master:9092,storm1:9092,storm2:9092', 'properties.group.id' = 'jason_flink_test', 'scan.startup.mode' = 'latest-offset', 'format' = 'json', 'json.fail-on-missing-field' = 'false', 'json.ignore-parse-errors' = 'false' );CREATE TABLE print_table(f1 TIMESTAMP(3),f2 TIMESTAMP(3),f3 BIGINT,f4 STRING)WITH ('connector' = 'print-rate','standard-error' = 'false','print-rate' = '0.01','sink.parallelism' = '4');insert into print_tableselect window_start, window_end, count(name), namefrom table(HOP(table kafka_table,descriptor(proctime),interval '30' second, interval '1' HOUR))group by window_start, window_end, name;
这里用的是下面革新的 print-rate connector,能够通过 'print-rate' = 'xxx' 来管制随机取样.
提交工作
sql-client.sh -i init.sql -f test_print_rate.sql
工作提交胜利后,先向 kafka 里写入数据,而后到 TM 的 Stdout 外面看下打印的数据.
能够看到数据的确做了随机取样,因为如果用默认的 Print Connector 的话,每条数据都会打印进去,因为 key 都是不一样的.这样打印的数据就会缩小很多,当上游数据量十分大时,也不会造成什么问题.