大家好,明天来聊一聊 RocketMQ 客户端音讯生产失败,怎么办?
上面是 RocketMQ 推出模式的一段代码:
public static void main(String[] args) throws InterruptedException, MQClientException { Tracer tracer = initTracer(); DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("CID_JODIE_1"); consumer.getDefaultMQPushConsumerImpl().registerConsumeMessageHook(new ConsumeMessageOpenTracingHookImpl(tracer)); consumer.subscribe("TopicTest", "*"); consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_FIRST_OFFSET); consumer.setConsumeTimestamp("20181109221800"); consumer.registerMessageListener(new MessageListenerConcurrently() { @Override public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext context) { try{ System.out.printf("%s Receive New Messages: %s %n", Thread.currentThread().getName(), msgs); }catch (Exception e){ return ConsumeConcurrentlyStatus.RECONSUME_LATER; } return ConsumeConcurrentlyStatus.CONSUME_SUCCESS; } }); consumer.start();}
从这段代码能够看出,消费者生产完音讯后会返回一个生产状态,那生产状态有哪些呢?参见类 ConsumeConcurrentlyStatus 中定义:
- 生产胜利,返回 CONSUME_SUCCESS;
- 生产失败,返回 RECONSUME_LATER。
上面代码就是返回下面两个状态的逻辑,对于生产状态,如果返回 null,会给它赋值 RECONSUME_LATER,解决逻辑如下:
//ConsumeRequest 类public void run() { MessageListenerConcurrently listener = ConsumeMessageConcurrentlyService.this.messageListener; //省略局部逻辑 long beginTimestamp = System.currentTimeMillis(); ConsumeReturnType returnType = ConsumeReturnType.SUCCESS; try { //省略局部逻辑 status = listener.consumeMessage(Collections.unmodifiableList(msgs), context); } catch (Throwable e) {} //省略局部逻辑 if (null == status) { //省略日志 status = ConsumeConcurrentlyStatus.RECONSUME_LATER; } //省略局部逻辑 if (!processQueue.isDropped()) { ConsumeMessageConcurrentlyService.this.processConsumeResult(status, context, this); } else {}}
这部分代码的 UML 类图如下:
下面代码中的 processConsumeResult 办法就是生产失败后客户端的解决逻辑:
public void processConsumeResult( final ConsumeConcurrentlyStatus status, final ConsumeConcurrentlyContext context, final ConsumeRequest consumeRequest) { //ackIndex 初始值是 Integer.MAX_VALUE; int ackIndex = context.getAckIndex(); switch (status) { case CONSUME_SUCCESS: if (ackIndex >= consumeRequest.getMsgs().size()) { ackIndex = consumeRequest.getMsgs().size() - 1; } //省略局部逻辑 break; case RECONSUME_LATER: ackIndex = -1; //省略局部逻辑 break; default: break; } switch (this.defaultMQPushConsumer.getMessageModel()) { case BROADCASTING: //播送模式下这里只打印日志 break; case CLUSTERING: List<MessageExt> msgBackFailed = new ArrayList<MessageExt>(consumeRequest.getMsgs().size()); for (int i = ackIndex + 1; i < consumeRequest.getMsgs().size(); i++) { MessageExt msg = consumeRequest.getMsgs().get(i); boolean result = this.sendMessageBack(msg, context); if (!result) { msg.setReconsumeTimes(msg.getReconsumeTimes() + 1); msgBackFailed.add(msg); } } if (!msgBackFailed.isEmpty()) { consumeRequest.getMsgs().removeAll(msgBackFailed); //发送回 Broker 失败的音讯,5s 后再次生产 this.submitConsumeRequestLater(msgBackFailed, consumeRequest.getProcessQueue(), consumeRequest.getMessageQueue()); } break; default: break; } //更新本地保留的偏移量 long offset = consumeRequest.getProcessQueue().removeMessage(consumeRequest.getMsgs()); if (offset >= 0 && !consumeRequest.getProcessQueue().isDropped()) { this.defaultMQPushConsumerImpl.getOffsetStore().updateOffset(consumeRequest.getMessageQueue(), offset, true); }}
1 生产胜利
下面的代码逻辑中,如果生产胜利,ackIndex 变量的值就是音讯数量缩小少 1,所以下面的 switch 逻辑是不会执行的,因为播送模式下,只是打印一段日志(没有其余逻辑),而集群模式下,for 循环的起始 i 变量曾经等于音讯数量,循环外面的代码不会执行。
因而,如果音讯生产胜利,只会走最上面的逻辑,更新本地保留的音讯偏移量。
2 生产失败
ackIndex 变量值等于 -1。
2.1 播送模式
在生产失败的状况下,播送模式的代码只是打印了一段日志,之后更新了本地保留的音讯偏移量,因而咱们晓得播送模式音讯生产失败后就不会从新生产了,相当于抛弃了音讯。
2.2 集群模式
从下面代码的 for 循环中,会把所有的音讯都发送回去去 Broker,这样这批音讯还能再次被拉取到进行生产。
对于发送给 Broker 失败的音讯,会提早 5s 后再次生产。代码如下:
private void submitConsumeRequestLater( final List<MessageExt> msgs, final ProcessQueue processQueue, final MessageQueue messageQueue) { this.scheduledExecutorService.schedule(new Runnable() { @Override public void run() { ConsumeMessageConcurrentlyService.this.submitConsumeRequest(msgs, processQueue, messageQueue, true); } }, 5000, TimeUnit.MILLISECONDS);}
更新本地保留的音讯偏移量时,会从音讯列表中发送回 Broker 失败的音讯先删除掉。
留神:从下面逻辑能够看到,在拉取到一批音讯进行生产时,只有有一条音讯生产失败,这批音讯都会进行重试,因而生产端做好幂等是必要的。
上面再看一下发送失败的音讯给 Broker 的代码是,发送音讯时,申请的 code 码是 CONSUMER_SEND_MSG_BACK。依据这个申请码就能找 Broker 端的解决逻辑。
如果发送回 Broker 时抛出异样,须要从新发送一个新的音讯,这里有四点须要留神:
- 新音讯的 Topic 变成【 %RETRY% + consumerGroup】;
- 新音讯的 RETRY_TOPIC 这个属性赋值为之前的 Topic;
- 新音讯的重试次数属性加 1;
- 新音讯的 DELAY 属性等于重试次数 + 3.
public void sendMessageBack(MessageExt msg, int delayLevel, final String brokerName) throws RemotingException, MQBrokerException, InterruptedException, MQClientException { try { this.mQClientFactory.getMQClientAPIImpl().consumerSendMessageBack(brokerAddr, msg, this.defaultMQPushConsumer.getConsumerGroup(), delayLevel, 5000, getMaxReconsumeTimes()); } catch (Exception e) { //Topic 变成 %RETRY% + consumerGroup Message newMsg = new Message(MixAll.getRetryTopic(this.defaultMQPushConsumer.getConsumerGroup()), msg.getBody()); String originMsgId = MessageAccessor.getOriginMessageId(msg); MessageAccessor.setOriginMessageId(newMsg, UtilAll.isBlank(originMsgId) ? msg.getMsgId() : originMsgId); //RETRY_TOPIC 赋值 MessageAccessor.putProperty(newMsg, MessageConst.PROPERTY_RETRY_TOPIC, msg.getTopic()); //重试次数+1 MessageAccessor.setReconsumeTime(newMsg, String.valueOf(msg.getReconsumeTimes() + 1)); //最大重试次数 MessageAccessor.setMaxReconsumeTimes(newMsg, String.valueOf(getMaxReconsumeTimes())); //DELAY = 重试次数 + 3 newMsg.setDelayTimeLevel(3 + msg.getReconsumeTimes()); this.mQClientFactory.getDefaultMQProducer().send(newMsg); } finally { msg.setTopic(NamespaceUtil.withoutNamespace(msg.getTopic(), this.defaultMQPushConsumer.getNamespace())); }}
2.3 Broker 解决
下面曾经讲过,对于解决失败的音讯,生产端会发送回 Broker,不过这里有一点须要留神,发送回 Broker 时,音讯的 Topic 变成【"%RETRY%" + namespace + "%" + 原始 topic】,封装逻辑在源码 ClientConfig.withNamespace。
依据申请码 CONSUMER_SEND_MSG_BACK 能够定位到 Broker 的解决逻辑在类 SendMessageProcessor,办法 asyncConsumerSendMsgBack。
2.3.1 进死信队列
如果重试次数超过了最大重试次数(默认 16 次),或者 delayLevel 值小于0,则音讯进死信队列,死信队列的 Topic 为【"%DLQ%" + 生产组】,代码如下:
//asyncConsumerSendMsgBack 办法if (msgExt.getReconsumeTimes() >= maxReconsumeTimes || delayLevel < 0) { newTopic = MixAll.getDLQTopic(requestHeader.getGroup()); queueIdInt = ThreadLocalRandom.current().nextInt(99999999) % DLQ_NUMS_PER_GROUP; topicConfig = this.brokerController.getTopicConfigManager().createTopicInSendMessageBackMethod(newTopic, DLQ_NUMS_PER_GROUP, PermName.PERM_WRITE | PermName.PERM_READ, 0); msgExt.setDelayTimeLevel(0);}
2.3.2 发送 CommitLog
如果提早级别(DELAY)等于 0,则提早级别就等于重试次数加 3。
有个中央须要留神,发送到提早队列的音讯从新进行了封装,封装这个音讯用的并不是客户端发来的那个音讯,而是从 CommitLog 依据偏移量查找的,代码如下:
MessageExt msgExt = this.brokerController.getMessageStore().lookMessageByOffset(requestHeader.getOffset());if (null == msgExt) { response.setCode(ResponseCode.SYSTEM_ERROR); response.setRemark("look message by offset failed, " + requestHeader.getOffset()); return CompletableFuture.completedFuture(response);}
如果查问失败,就会给客户端返回零碎谬误。
这里有个重要的细节,这个音讯写入 CommitLog 时,会判断 DELAY 是否大于 0,如果大于 0,就会批改 Topic。代码如下:
//CommitLog 类 asyncPutMessage 办法if (tranType == MessageSysFlag.TRANSACTION_NOT_TYPE || tranType == MessageSysFlag.TRANSACTION_COMMIT_TYPE) { // Delay Delivery if (msg.getDelayTimeLevel() > 0) { if (msg.getDelayTimeLevel() > this.defaultMessageStore.getScheduleMessageService().getMaxDelayLevel()) { //从源码看,这里最大值是18 msg.setDelayTimeLevel(this.defaultMessageStore.getScheduleMessageService().getMaxDelayLevel()); } topic = TopicValidator.RMQ_SYS_SCHEDULE_TOPIC; //queueId = delayLevel - 1 int queueId = ScheduleMessageService.delayLevel2QueueId(msg.getDelayTimeLevel()); // Backup real topic, queueId MessageAccessor.putProperty(msg, MessageConst.PROPERTY_REAL_TOPIC, msg.getTopic()); MessageAccessor.putProperty(msg, MessageConst.PROPERTY_REAL_QUEUE_ID, String.valueOf(msg.getQueueId())); msg.setPropertiesString(MessageDecoder.messageProperties2String(msg.getProperties())); msg.setTopic(topic); msg.setQueueId(queueId); }}
这里把 Topic 批改为 SCHEDULE_TOPIC_XXXX,供延时队列来调度。进入延时队列后,延时队列会依照上面的工夫进行调度:
private String messageDelayLevel = "1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h";
下面代码能够看到,延时音讯的调度有 18 个等级,最小的 1s,最大的 2h。而从上面的代码咱们能够看到,调度应用第三个等级开始的:
if (0 == delayLevel) { delayLevel = 3 + msgExt.getReconsumeTimes();}msgExt.setDelayTimeLevel(delayLevel);
2.3.3 延时队列
延时队列的代码逻辑在类 ScheduleMessageService,这里的 start 办法触发延时队列的调度,而 start 办法的业务入口在 BrokerStartup 的初始化。
首先,会计算出每个延时等级对应的延时工夫(解决到 ms 级别),放到 delayLevelTable,它是一个 ConcurrentHashMap,而后创立一个外围线程数等于 18 的定时线程池,顺次对每个级别的延时进行调度。这个工作启动后,会每 100ms 执行一次。代码如下:
public void start() { if (started.compareAndSet(false, true)) { this.load(); this.deliverExecutorService = new ScheduledThreadPoolExecutor(this.maxDelayLevel, new ThreadFactoryImpl("ScheduleMessageTimerThread_")); //省略异步 for (Map.Entry<Integer, Long> entry : this.delayLevelTable.entrySet()) { Integer level = entry.getKey(); Long timeDelay = entry.getValue(); Long offset = this.offsetTable.get(level); if (null == offset) { offset = 0L; } if (timeDelay != null) { //省略异步 this.deliverExecutorService.schedule(new DeliverDelayedMessageTimerTask(level, offset), FIRST_DELAY_TIME, TimeUnit.MILLISECONDS); } } //省略其余逻辑 }}
调度逻辑中,首先依据 Topic 和 queueId 找到对应的生产队列,而后从外面间断读取音讯:
public void executeOnTimeup() { ConsumeQueue cq = ScheduleMessageService.this.defaultMessageStore.findConsumeQueue(TopicValidator.RMQ_SYS_SCHEDULE_TOPIC, delayLevel2QueueId(delayLevel)); //省略空解决 SelectMappedBufferResult bufferCQ = cq.getIndexBuffer(this.offset); //省略空解决 long nextOffset = this.offset; try { int i = 0; ConsumeQueueExt.CqExtUnit cqExtUnit = new ConsumeQueueExt.CqExtUnit(); //CQ_STORE_UNIT_SIZE = 20,因为 ConsumeQueue 中一个元素占 20 字节 for (; i < bufferCQ.getSize() && isStarted(); i += ConsumeQueue.CQ_STORE_UNIT_SIZE) { //offset占8个字节 long offsetPy = bufferCQ.getByteBuffer().getLong(); //音讯大小占4个字节 int sizePy = bufferCQ.getByteBuffer().getInt(); //ConsumeQueue中tagsCode是一个投递工夫点 long tagsCode = bufferCQ.getByteBuffer().getLong(); if (cq.isExtAddr(tagsCode)) { if (cq.getExt(tagsCode, cqExtUnit)) { tagsCode = cqExtUnit.getTagsCode(); } else { //can't find ext content.So re compute tags code. long msgStoreTime = defaultMessageStore.getCommitLog().pickupStoreTimestamp(offsetPy, sizePy); tagsCode = computeDeliverTimestamp(delayLevel, msgStoreTime); } } long now = System.currentTimeMillis(); long deliverTimestamp = this.correctDeliverTimestamp(now, tagsCode); nextOffset = offset + (i / ConsumeQueue.CQ_STORE_UNIT_SIZE); long countdown = deliverTimestamp - now; if (countdown > 0) { //工夫未到,期待下次调度 this.scheduleNextTimerTask(nextOffset, DELAY_FOR_A_WHILE); return; } MessageExt msgExt = ScheduleMessageService.this.defaultMessageStore.lookMessageByOffset(offsetPy, sizePy); MessageExtBrokerInner msgInner = ScheduleMessageService.this.messageTimeup(msgExt); //省略事务音讯 boolean deliverSuc; //同步异步都有,只保留同步代码 deliverSuc = this.syncDeliver(msgInner, msgExt.getMsgId(), nextOffset, offsetPy, sizePy); } nextOffset = this.offset + (i / ConsumeQueue.CQ_STORE_UNIT_SIZE); } catch (Exception e) { } finally { bufferCQ.release(); } //DELAY_FOR_A_WHILE是 100ms this.scheduleNextTimerTask(nextOffset, DELAY_FOR_A_WHILE);}
因为 messageTimeup 办法应用了原始的 Topic 和 QueueId 新建了音讯,所以下面的 syncDeliver 形式是将音讯从新投递到原始的队列中,这样消费者能够再次拉取到这条音讯进行生产。留神:下面 ConsumeQueue 的 tagsCode 是一个工夫点,很容易误会为是 tag 的 hashCode,MessageQueue 的存储元素中最初 8 字节的确是 tag 的 hashCode。
3 总结
消费者生产失败后,会把生产发回给 Broker 进行解决。下图是客户端解决流程:
Broker 收到音讯后,会把音讯从新发送到 CommitLog,发送到 CommitLog 之前,首先会批改 Topic 为 SCHEDULE_TOPIC_XXXX,这样就发送到了延时队列,延时队列再依据延时级别把音讯投递到原始的队列,这样消费者就能再次拉取到。流程如下图:
从流程来看,消费者批量拉取音讯,如果局部音讯生产失败,那就会整批全副重试。所以做好幂等是必要的。