ReentrantLock 特色

特点:

1.可重入
2.偏心/非偏心
3.可中断
4.反对条件期待
5.可设置锁超时

罕用 API

应用例子:

public class ReentrantLockTest {    static ReentrantLock lock = new ReentrantLock(true);    static class ClientThread extends Thread {        @Override        public void run() {            System.out.println(Thread.currentThread() + "开始尝试获取锁");            lock.lock();            try {                System.out.println(Thread.currentThread() + "胜利获取锁");                TimeUnit.SECONDS.sleep(5);            } catch (InterruptedException e) {                e.printStackTrace();            } finally {                lock.unlock();                System.out.println(Thread.currentThread() + "实现开释锁");            }        }    }    public static void main(String[] args) throws InterruptedException {        ClientThread t1 = new ClientThread();        ClientThread t2 = new ClientThread();        ClientThread t3 = new ClientThread();        t1.start();        t2.start();        t3.start();        TimeUnit.SECONDS.sleep(10);    }}

源码剖析

获取锁

如果我应用上面的代码进行获取就行:

ReentrantLock lock = new ReentrantLock();lock.lock();lock.unlock();

ReentrantLock 默认调用的就是非偏心锁 调用栈: java.util.concurrent.locks.ReentrantLock#lock

  • java.util.concurrent.locks.ReentrantLock.NonfairSync#lock

    final void lock() {  // 间接尝试加锁  if (compareAndSetState(0, 1))      setExclusiveOwnerThread(Thread.currentThread());  else      // 如果获取锁失败进入 AQS acquire 逻辑      acquire(1);}

    如果 compareAndSetState(0, 1)可能间接执行胜利,那么将间接完结办法的执行。 如果失败,那么就会调用acquire 办法如下:

    public final void acquire(int arg) {  // tryAcquire(arg) 尝试获取锁  // acquireQueued 获取锁失败进行期待队列  if (!tryAcquire(arg) &&      acquireQueued(addWaiter(Node.EXCLUSIVE), arg))      selfInterrupt();}

    咱们先看 tryAcquire办法: java.util.concurrent.locks.ReentrantLock.NonfairSync#tryAcquire

  • java.util.concurrent.locks.ReentrantLock.Sync#nonfairTryAcquire

他会间接调用到 nonfairTryAcquire非偏心锁的加锁逻辑 外面有两个逻辑:

  • 如果以后状态无锁,间接尝试加锁,加锁胜利返回 true
  • 如果以后时锁重入,那么间接批改 AQS 状态共享变量值 state 等于 c + acquires, 加锁胜利返回 ture
  • 如果都不满足,那么返回加锁失败返回 false

    // 非偏心锁的逻辑// 如何了解插队, 这里的插队是以后队列中被唤醒的线程, 和以后退出的线程都能够被执行// 如果以后退出线程比队列中唤醒的线程先获取到锁, 就是插队景象final boolean nonfairTryAcquire(int acquires) {  final Thread current = Thread.currentThread();  int c = getState();  // 无锁状态, 尝试竞争  if (c == 0) {      if (compareAndSetState(0, acquires)) { //是否获取到锁          setExclusiveOwnerThread(current);          return true;      }  }  // 以后线程持有锁, state 计数 +1  else if (current == getExclusiveOwnerThread()) { //判断是否是重入      int nextc = c + acquires;      if (nextc < 0) // overflow          throw new Error("Maximum lock count exceeded");      setState(nextc);      return true;  }  return false;}

    如果 tryAcquire 调用实现后是获取锁胜利 acquire办法执行完结,最初代表 lock 办法执行完结。

获取锁失败进入同步队列

如果获取锁失败,那么就会执行 acquire代码前面段 if 逻辑的执行 acquireQueued(addWaiter(Node.EXCLUSIVE), arg) 这里其实能够分为两个办法来看

  • addWaiter(Node.EXCLUSIVE)
  • acquireQueued(xxx, arg)

依照执行程序,咱们先看 addWaiter(Node.EXCLUSIVE) 这里次要是入队的逻辑。 addWaiter: java.util.concurrent.locks.AbstractQueuedSynchronizer#addWaiter

private Node addWaiter(Node mode) {    // 将以后线程转换为 AQS Node 节点    Node node = new Node(Thread.currentThread(), mode);    // Try the fast path of enq; backup to full enq on failure    // 尝试间接退出到尾节点    Node pred = tail;    if (pred != null) {        // 以后节点的前驱节点指向尾节点        node.prev = pred;        // cas 批改 tail 节点,如果胜利返回 node         if (compareAndSetTail(pred, node)) {            pred.next = node;            return node;        }    }    // 如果失败,调用 enq    enq(node);    return node;}

enq是将以后节点插入队列,必要的时候会进行初始化

//将节点插入队列,必要时进行初始化。private Node enq(final Node node) {    for (;;) {        Node t = tail;        // 如果没有尾节点,那么须要进行初始化        if (t == null) { // Must initialize            if (compareAndSetHead(new Node()))                tail = head;        }         // 如果有尾节点/其实就是有头节点/曾经被初始化,通过 CAS 入队        else {            node.prev = t;            if (compareAndSetTail(t, node)) {                t.next = node;                return t;            }        }    }}

后面咱们看看完了,以后获取锁的线程当获取锁失败的时候,胜利进入 AQS 队列,接下来咱们持续看 acquireQueued又做了什么呢?

  • 如果是队列头节点,会再次尝试获取锁
  • 如果批改 java.util.concurrent.locks.AbstractQueuedSynchronizer.Node状态位

    final boolean acquireQueued(final Node node, int arg) {  boolean failed = true;  try {      // 是否中断      boolean interrupted = false;      for (;;) {          // 获取 node 的前驱节点          final Node p = node.predecessor();          // 如果是头节点,再次尝试获取锁          if (p == head && tryAcquire(arg)) {              // 将 node 设置为 头节点              setHead(node);              p.next = null; // help GC              failed = false;              return interrupted;          }          // 判断是否须要进行阻塞以后线程          if (shouldParkAfterFailedAcquire(p, node) &&              // 阻塞线程              parkAndCheckInterrupt())              interrupted = true;      }  } finally {      // 是否失败      if (failed)          // 如果失败,勾销获取锁          cancelAcquire(node);  }}

    下面咱们能够看到,for (;;)中有两个判断

  • 如果是头节点,就调用tryAcquire尝试获取锁 (之前咱们曾经剖析过 tryAcquire 了,咱们次要看前面个 if )
  • 如果不是就进入 shouldParkAfterFailedAcquire 办法

在调用 acquireQueued这个过程中可能调用屡次 shouldParkAfterFailedAcquire 办法。shouldParkAfterFailedAcquire 会执行一下几个操作。

  • 能够用来批改以后节点的状态,
  • 和对链表上有效的节点出队

    /**  * 当获取锁失败后, 查看更新新节点状态如果是须要阻塞返回, true * <p> * 一个前继节点 waitStatus = 0, 第一次将持续设置为 SIGNAL, 通知以后线程筹备进入阻塞, 此时仍旧获取不到, 以后线程进入阻塞 * * @param pred 前继节点 * @param node 以后节点 * @return {@code true} if thread should block */private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {  int ws = pred.waitStatus; // 前继节点的状态, 第一次进入的话, 肯定是 0  if (ws == Node.SIGNAL)      return true;  if (ws > 0) {      do {          // 出队, 剔除有效的节点          node.prev = pred = pred.prev;      } while (pred.waitStatus > 0);      pred.next = node;  } else {      // 第一次进来, pred.waitStatus = 0 执行这个分支      // 将前继节点的状态批改为 SIGNAL, 示意 pred.next 节点须要被唤醒(此时筹备进入阻塞, 然而还未被阻塞, 再次获取锁失败之后才会被阻塞)      compareAndSetWaitStatus(pred, ws, Node.SIGNAL);  }  return false;}

    当 Node 被批改 Node.SIGNAL状态后,第一个 if 返回 true , 咱们再次回到 acquireQueued 办法,就会执行 parkAndCheckInterrupt 办法,就是将以后的线程 park 而后返回以后线程的中断状态。

    private final boolean parkAndCheckInterrupt() {  // 阻塞线程  LockSupport.park(this);  // 返回线程中断状态  return Thread.interrupted();}

    留神:这里线程 park 过后,其实获取锁就完结了前半段的操作,实现同步队列的入队,并且进入期待。咱们就须要期待解锁唤醒。

开释锁

开释锁的代码如下:

lock.unlock();

开释锁做了什么呢?

  • 开释以后锁的状态
  • 在 AQS 队列中去唤醒排队的头节点

调用栈如下: java.util.concurrent.locks.ReentrantLock#unlock

  • java.util.concurrent.locks.AbstractQueuedSynchronizer#release

咱们能够从 release办法开始

// 解锁public final boolean release(int arg) {    if (tryRelease(arg)) {        Node h = head;        // 判断是否有须要唤醒的线程        if (h != null && h.waitStatus != 0) //waitStatus 的值为 0, 只有当后继存在节点才会被设置为该值不为 0, 此时须要唤醒后继线程            unparkSuccessor(h);        return true;    }    return false;}

开释锁,次要是调用 tryRelease, 首先就是思考之前的重入问题,间接对 state 进行 -1 ,而后如果 c == 0示意以后线程不再持有锁,咱们就能够批改 ownerThread == null . 这个时候,最初批改 state 为新值。

// tryRelease protected final boolean tryRelease(int releases) {    int c = getState() - releases;    // 判断是否是以后线程持有锁    if (Thread.currentThread() != getExclusiveOwnerThread())        throw new IllegalMonitorStateException();    boolean free = false;    if (c == 0) {        // 如果 state == 0 示意以后线程不在占有该锁        free = true;        setExclusiveOwnerThread(null);    }    setState(c);    return free;}

开释锁胜利后,再次回到 release办法,会再次判断,如果 AQS 队列不为空,那么就进行排队线程唤醒。 次要是调用 java.util.concurrent.locks.AbstractQueuedSynchronizer#unparkSuccessor

// 唤醒队列中的线程private void unparkSuccessor(Node node) {    // 将以后节点状态批改为 0      int ws = node.waitStatus;    if (ws < 0)        compareAndSetWaitStatus(node, ws, 0);    // 反向查找    Node s = node.next;    if (s == null || s.waitStatus > 0) {        s = null;        for (Node t = tail; t != null && t != node; t = t.prev)            if (t.waitStatus <= 0)                s = t;    }    if (s != null)        // 唤醒队列中的节点        LockSupport.unpark(s.thread);}

其实这里最要害的就是 LockSupport.unpark(s.thread); 这里就会回到 acquireQueued,执行唤醒后强锁的逻辑,仍然在 acquireQueued外面。

开释锁后唤醒期待节点

以后节点被唤醒逻辑,首先会在 shouldParkAfterFailedAcquire 办法中出队,而后尝试加锁如果加锁胜利就返回 true.

private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {    int ws = pred.waitStatus;    if (ws == Node.SIGNAL)        /*        * This node has already set status asking a release        * to signal it, so it can safely park.        */        return true;    if (ws > 0) {        /*         * Predecessor was cancelled. Skip over predecessors and         * indicate retry.         */        // 出队的逻辑        do {            node.prev = pred = pred.prev;        } while (pred.waitStatus > 0);        pred.next = node;    } else {        /*             * waitStatus must be 0 or PROPAGATE.  Indicate that we             * need a signal, but don't park yet.  Caller will need to             * retry to make sure it cannot acquire before parking.             */        compareAndSetWaitStatus(pred, ws, Node.SIGNAL);    }    return false;}

再次竞争锁,次要是在acquireQueued办法中调用 tryAcquire办法进行获取锁。如果获取锁失败,就又再次获取锁,如果获取锁胜利返回。

测试和实际

反对锁中断

如果通过 lock_.lockInterruptibly(); 形式加锁,如果以后线程呈现中断过后,会抛出 _java.lang.InterruptedException线程中断异样,所以 ReentrantLock反对可中断。 相干源码:

/** * Convenience method to park and then check if interrupted * * @return {@code true} if interrupted */private final boolean parkAndCheckInterrupt() {    // LockSupport.park 会革除中断信号    LockSupport.park(this);    return Thread.interrupted();}// private void doAcquireInterruptibly(int arg)    throws InterruptedException {    final Node node = addWaiter(Node.EXCLUSIVE);    boolean failed = true;    try {        for (;;) {            final Node p = node.predecessor();            if (p == head && tryAcquire(arg)) {                setHead(node);                p.next = null; // help GC                failed = false;                return;            }            if (shouldParkAfterFailedAcquire(p, node) &&                parkAndCheckInterrupt())                // 抛出中断异样                throw new InterruptedException();        }    } finally {        if (failed)            cancelAcquire(node);    }}

试验代码:

public class ReentrantLockTest {    static ReentrantLock lock = new ReentrantLock(true);    static class ClientThread implements Runnable {        @SneakyThrows        @Override        public void run() {            System.out.println(Thread.currentThread() + "开始尝试获取锁");            lock.lockInterruptibly();            try {                System.out.println(Thread.currentThread() + "胜利获取锁");                TimeUnit.SECONDS.sleep(5);            } catch (InterruptedException e) {                e.printStackTrace();            } finally {                lock.unlock();                System.out.println(Thread.currentThread() + "实现开释锁");            }        }    }    public static void main(String[] args) throws InterruptedException {        Thread t1 = new Thread(new ClientThread(), "t1");        Thread t2 = new Thread(new ClientThread(), "t2");        Thread t3 = new Thread(new ClientThread(), "t3");        t1.start();        t2.start();        // 锁中断        //lock.lockInterruptibly();        TimeUnit.SECONDS.sleep(1);        t3.start();        TimeUnit.SECONDS.sleep(1);        t3.interrupt();        TimeUnit.SECONDS.sleep(10);    }}

输入后果:

Thread[t1,5,main]开始尝试获取锁Thread[t2,5,main]开始尝试获取锁Thread[t1,5,main]胜利获取锁Thread[t3,5,main]开始尝试获取锁Exception in thread "t3" java.lang.InterruptedException    at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireInterruptibly(AbstractQueuedSynchronizer.java:898)    at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireInterruptibly(AbstractQueuedSynchronizer.java:1222)    at java.util.concurrent.locks.ReentrantLock.lockInterruptibly(ReentrantLock.java:335)    at io.zhengsh.juc._1lock.reentrantlock.ReentrantLockTest$ClientThread.run(ReentrantLockTest.java:18)    at java.lang.Thread.run(Thread.java:748)Thread[t1,5,main]实现开释锁Thread[t2,5,main]胜利获取锁Thread[t2,5,main]实现开释锁

获取锁设置超时

lock.tryLock(2, TimeUnit.SECONDS)能够反对设置获取锁的超时工夫,能够无效的防止线程饥饿问题 测试代码:

public class ReentrantLockTryTest {    static ReentrantLock lock = new ReentrantLock(true);    static class ClientThread implements Runnable {        @Override        public void run() {            System.out.println(Thread.currentThread() + "\t" + (System.currentTimeMillis() / 1000) + "\t开始尝试获取锁");            try {                if (lock.tryLock(2, TimeUnit.SECONDS)) {                    System.out.println(Thread.currentThread() + "\t" + (System.currentTimeMillis() / 1000) + "\t获取锁胜利");                    TimeUnit.SECONDS.sleep(5);                } else {                    System.out.println(Thread.currentThread() + "\t" + (System.currentTimeMillis() / 1000) + "\t获取锁失败");                }            } catch (InterruptedException e) {                e.printStackTrace();            } finally {                if (lock.isHeldByCurrentThread() && lock.isLocked()) {                    lock.unlock();                    System.out.println(Thread.currentThread() + "\t" + (System.currentTimeMillis() / 1000) + "\t实现开释锁");                }            }        }    }    public static void main(String[] args) throws InterruptedException {        Thread t1 = new Thread(new ClientThread(), "t1");        Thread t2 = new Thread(new ClientThread(), "t2");        Thread t3 = new Thread(new ClientThread(), "t3");        t1.start();        t2.start();        t3.start();        //t1.interrupt();        TimeUnit.SECONDS.sleep(20);    }}

输入后果

Thread[t1,5,main]    1653540581    开始尝试获取锁Thread[t3,5,main]    1653540581    开始尝试获取锁Thread[t2,5,main]    1653540581    开始尝试获取锁Thread[t1,5,main]    1653540581    获取锁胜利Thread[t3,5,main]    1653540583    获取锁失败Thread[t2,5,main]    1653540583    获取锁失败Thread[t1,5,main]    1653540586    实现开释锁

条件期待队列应用

Condition 是在 java 1.5 中才呈现的,它用来代替传统的Object的wait()、notify()实现线程间的合作,相比应用Object的wait()、notify(),应用Condition的await()、signal()这种形式实现线程间合作更加平安和高效。因而通常来说比拟举荐应用 Condition,阻塞队列实际上是应用了 Condition 来模仿线程间合作。 Condition 是个接口,根本的办法就是 await() 和 signal() 办法; Condition 依赖于 Lock 接口,生成一个 Condition 的根本代码是 lock.newCondition() 调用 Condition 的 await() 和 signal() 办法,都必须在 lock 爱护之内,就是说必须在 lock.lock() 和 lock.unlock 之间才能够应用:

  • Conditon中的await()对应Object的wait();
  • Condition中的signal()对应Object的notify();
  • Condition中的signalAll()对应Object的notifyAll()。

测试场景: 上面一个场景,须要ABC3个线程,A线程打印1次,而后是B线程打印2次,再是C线程打印3次,线程交替打印。 ABC线程须要交替执行,咱们须要管制,线程的执行先后顺序 咱们能够应用多条件Condition来管制,每一个线程领有一个condition对象,调用各种的await办法,能够使线程期待,而后让别的线程调用这个condition对象的signal办法,唤醒线程。 代码如下:

public class ReentrantLockConditionTest {    private int data = 1;    private Lock lock = new ReentrantLock();    Condition condition1 = lock.newCondition();    Condition condition2 = lock.newCondition();    Condition condition3 = lock.newCondition();    public void printA() {        lock.lock();        try {            while (data != 1) {                condition1.await();            }            // 打印5次            for (int i = 0; i < 5; i++) {                System.out.println(Thread.currentThread().getName() + " ->" + data);            }            data = 2;            // 告诉B线程            condition2.signal();        } catch (Exception e) {            e.printStackTrace();        } finally {            lock.unlock();        }    }    public void printB() {        lock.lock();        try {            while (data != 2) {                condition2.await();            }            // 打印10次            for (int i = 0; i < 10; i++) {                System.out.println(Thread.currentThread().getName() + " ->" + data);            }            data = 3;            // 告诉C            condition3.signal();        } catch (Exception e) {            e.printStackTrace();        } finally {            lock.unlock();        }    }    public void printC() {        lock.lock();        try {            while (data != 3) {                condition3.await();            }            // 打印15次            for (int i = 0; i < 15; i++) {                System.out.println(Thread.currentThread().getName() + " ->" + data);            }            data = 1;            // 告诉A            condition1.signal();        } catch (Exception e) {            e.printStackTrace();        } finally {            lock.unlock();        }    }    public static void main(String[] args) throws InterruptedException {        ReentrantLockConditionTest conditionTest = new ReentrantLockConditionTest();        // A,B,C 交替执行        new Thread(conditionTest::printA, "A").start();        new Thread(conditionTest::printB, "B").start();        new Thread(conditionTest::printC, "C").start();    }}

输入后果如下:

A ->1B ->2B ->2C ->3C ->3C ->3