小 T 导读:想用 Flink 对接 TDengine?保姆级教程来了。
0、前言
TDengine 是由涛思数据开发并开源的一款高性能、分布式、反对 SQL 的时序数据库(Time-Series Database)。
除了外围的时序数据库性能外,TDengine 还提供缓存、数据订阅、流式计算等大数据平台所须要的系列性能。然而很多小伙伴出于架构的思考,还是须要将数据导出到 Apache Flink、Apache Spark 等平台进行计算剖析。
为了帮忙大家对接,咱们特地推出了保姆级课程,包学包会。
1、技术实现
Apache Flink 提供了 SourceFunction 和 SinkFunction,用来提供 Flink 和内部数据源的连贯,其中 SouceFunction 为从数据源读取数据,SinkFunction 为将数据写入数据源。 与此同时,Flink 提供了 RichSourceFunction 和 RichSinkFunction 这两个类(继承自AbstractRichFunction),提供了额定的初始化(open(Configuration))和销毁办法(close())。 通过重写这两个办法,能够防止每次读写数据时都从新建设连贯。
2、代码实现
残缺源码:https://github.com/liuyq-617/...
代码逻辑:
1) 自定义类 SourceFromTDengine
用处:数据源连贯,数据读取
package com.taosdata.flink;import org.apache.flink.configuration.Configuration;import org.apache.flink.streaming.api.functions.source.RichSourceFunction;import com.taosdata.model.Sensor;import java.sql.*;import java.util.Properties;public class SourceFromTDengine extends RichSourceFunction<Sensor> { Statement statement; private Connection connection; private String property; public SourceFromTDengine(){ super(); } @Override public void open(Configuration parameters) throws Exception { super.open(parameters); String driver = "com.taosdata.jdbc.rs.RestfulDriver"; String host = "u05"; String username = "root"; String password = "taosdata"; String prop = System.getProperty("java.library.path"); Logger LOG = LoggerFactory.getLogger(SourceFromTDengine.class); LOG.info("java.library.path:{}", prop); System.out.println(prop); Class.forName( driver ); Properties properties = new Properties(); connection = DriverManager.getConnection("jdbc:TAOS-RS://" + host + ":6041/tt" + "?user=root&password=taosdata" , properties); statement = connection.createStatement(); } @Override public void close() throws Exception { super.close(); if (connection != null) { connection.close(); } if (statement != null) { statement.close(); } } @Override public void run(SourceContext<Sensor> sourceContext) throws Exception { try { String sql = "select * from tt.meters"; ResultSet resultSet = statement.executeQuery(sql); while (resultSet.next()) { Sensor sensor = new Sensor( resultSet.getLong(1), resultSet.getInt( "vol" ), resultSet.getFloat( "current" ), resultSet.getString( "location" ).trim()); sourceContext.collect( sensor ); } } catch (Exception e) { e.printStackTrace(); } } @Override public void cancel() { }}
2) 自定义类 SinkToTDengine
用处:数据源连贯,数据写入
SinkToTDengine
package com.taosdata.flink;import org.apache.flink.configuration.Configuration;import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;import com.taosdata.model.Sensor;import java.sql.*;import java.util.Properties;public class SinkToTDengine extends RichSinkFunction<Sensor> { Statement statement; private Connection connection; @Override public void open(Configuration parameters) throws Exception { super.open(parameters); String driver = "com.taosdata.jdbc.rs.RestfulDriver"; String host = "TAOS-FQDN"; String username = "root"; String password = "taosdata"; String prop = System.getProperty("java.library.path"); System.out.println(prop); Class.forName( driver ); Properties properties = new Properties(); connection = DriverManager.getConnection("jdbc:TAOS-RS://" + host + ":6041/tt" + "?user=root&password=taosdata" , properties); statement = connection.createStatement(); } @Override public void close() throws Exception { super.close(); if (connection != null) { connection.close(); } if (statement != null) { statement.close(); } } @Override public void invoke(Sensor sensor, Context context) throws Exception { try { String sql = String.format("insert into sinktest.%s using sinktest.meters tags('%s') values(%d,%d,%f)", sensor.getLocation(), sensor.getLocation(), sensor.getTs(), sensor.getVal(), sensor.getCurrent() ); statement.executeUpdate(sql); } catch (Exception e) { e.printStackTrace(); } }}
3) 自定义类 Sensor
用处:定义数据结构,用来承受数据
package com.taosdata.model;public class Sensor { public long ts; public int val; public float current; public String location; public Sensor() { } public Sensor(long ts, int val, float current, String location) { this.ts = ts; this.val = val; this.current = current; this.location = location; } public long getTs() { return ts; } public void setTs(long ts) { this.ts = ts; } public int getVal() { return val; } public void setVal(int val) { this.val = val; } public float getCurrent() { return current; } public void setCurrent(float current) { this.current = current; } public String getLocation() { return location; } public void setLocation(String location) { this.location = location; } @Override public String toString() { return "Sensor{" + "ts=" + ts + ", val=" + val + ", current=" + current + ", location='" + location + '\'' + '}'; }}
4) 主程序类 ReadFromTDengine
用处:调用 Flink 进行读取和写入数据
package com.taosdata;import org.apache.flink.streaming.api.datastream.DataStreamSource;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.api.common.functions.MapFunction;import org.apache.flink.streaming.api.datastream.DataStream;import com.taosdata.model.Sensor;import org.slf4j.LoggerFactory;import org.slf4j.Logger;public class ReadFromTDengine { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); DataStreamSource<Sensor> SensorList = env.addSource( new com.taosdata.flink.SourceFromTDengine() ); SensorList.print(); SensorList.addSink( new com.taosdata.flink.SinkToTDengine() ); env.execute(); }}
3、简略测试 RESTful 接口
1) 环境筹备:
a) Flink 装置&启动:
- wget https://dlcdn.apache.org/flin...
- tar zxf flink-1.14.3-bin-scala_2.12.tgz -C /usr/local
- /usr/local/flink-1.14.3/bin/start-cluster.sh
b) TDengine Database 环境筹备:
创立原始数据:
- create database tt;
- create table
meters
(ts
TIMESTAMP,vol
INT,current
FLOAT) TAGS (location
BINARY(20)); - insert into beijing using meters tags(‘beijing’) values(now,220,30.2);
创立指标数据库表:
- create database sinktest;
- create table
meters
(ts
TIMESTAMP,vol
INT,current
FLOAT) TAGS (location
BINARY(20));
2) 打包编译:
源码地位: https://github.com/liuyq-617/...
mvn clean package
3) 程序启动:
flink run target/test-flink-1.0-SNAPSHOT-dist.jar
读取数据
- vi log/flink-root-taskexecutor-0-xxxxx.out
- 查看到数据打印:Sensor{ts=1645166073101, val=220, current=5.7, location=’beijing’}
写入数据
- show sinktest.tables;
- 曾经创立了beijing 子表
- select * from sinktest.beijing;
- 能够查问到刚插入的数据
4、应用 JNI 形式
触类旁通的小伙伴此时曾经猜到,只有把 JDBC URL 批改一下就能够了。
然而 Flink 每次分派作业时都在应用一个新的 ClassLoader,而咱们在计算节点上就会失去“Native library already loaded in another classloader”谬误。
为了防止此问题,能够将 JDBC 的 jar 包放到 Flink 的 lib 目录下,不去调用 dist 包就能够了。
- cp taos-jdbcdriver-2.0.37-dist.jar /usr/local/flink-1.14.3/lib
- flink run target/test-flink-1.0-SNAPSHOT.jar
5、小结
通过在我的项目中引入 SourceFromTDengine 和 SinkToTDengine 两个类,即可实现在 Flink 中对 TDengine 的读写操作。前面咱们会有文章介绍 Spark 和 TDengine 的对接。
注:文中应用的是 JDBC 的 RESTful 接口,这样就不必在 Flink 的节点装置 TDengine,JNI 形式须要在 Flink 节点装置 TDengine Database 的客户端。
想理解更多 TDengine Database的具体细节,欢送大家在GitHub上查看相干源代码。