一、Kunlun-Storage简介

KunlunStorage是泽拓科技基于Percona-mysql-8.0.26优化的数据库存储服务器,作为KunlunDB分布式数据库的存储节点,咱们对percona-mysql做了大量性能加强,补足了其在XA事务处理的容灾和错误处理方面的空白,并减少了一些昆仑数据库集群整体须要的性能,包含fullsync复制,update/delete...returning语句等。

二、测试环境

测试软件:

sysbench 1.1.0-df89d34 (using bundled LuaJIT 2.1.0-beta3(AWS 云上环境)

sysbench 1.0.20 (using system LuaJIT 2.1.0-beta3)(本地部署环境)

服务器配置:

PostgreSQL和Kunlun-Storage各部署在一台:亚马逊i3.4xlarge(CPU 8cores 16 Threads,内存:122G,存储:2个1900 NVMe SSD)上(AWS 云上环境)

PostgreSQL和Kunlun-Storage各部署同一台服务器上(CPU 16 cores 32 Threads, 内存: 64G,存储:1个 NVMe SSD)上(本地部署环境)

软件版本:

Postgresql:PostgreSQL 14.2 onx86_64-pc-linux-gnu

Kunlun-Storage:8.0.26-16-kunlun-storage

数据库参数配置:

PostgreSQL:

shared_buffers = 32768MBwal_level = replicafsync = on         synchronous_commit = on       wal_sync_method = fdatasync full_page_writes = on  

Kunlun-Storage:

innodb_buffer_pool_size  32768MBinndo_flush_at_trx_commit=1sync_binlog=1innodb_use_fdatasync = 1
测试背景:

PostgreSQL和Kunlun-Storage采纳默认的装置配置,只调整了内存参数及上述几个参数,整个测试过程PostgreSQL和Kunlun-Storage没有任何优化行为。

三、测试数据

测试软件:

sysbench 1.1.0-df89d34 (using bundled LuaJIT 2.1.0-beta3(AWS 云上环境)

sysbench 1.0.20 (using system LuaJIT 2.1.0-beta3)(本地部署环境)

Sysbench测试场景:
场景一 :oltp_write_only

每个事务执行如下4种操作:execute_index_updates()、execute_non_index_updates()、execute_delete_inserts()

场景二:oltp_update_index

每个事务执行如下1种操作:execute_index_updates()

场景三:oltp_update_non_index

每个事务执行如下1种操作:execute_non_index_updates()

场景四:oltp_read_write.lua

每个事务执行如下7种操作:execute_simple_ranges(),execute_sum_ranges()、 execute_order_ranges()、execute_distinct_ranges()、execute_index_updates()、execute_non_index_updates()、execute_delete_inserts()

各个操作操作对应的SQL语句如下:
sum_ranges = {      "SELECT SUM(k) FROMsbtest%u WHERE id BETWEEN ? AND ?",       t.INT, t.INT},order_ranges = {      "SELECT c FROMsbtest%u WHERE id BETWEEN ? AND ? ORDER BY c",       t.INT, t.INT},distinct_ranges = {      "SELECT DISTINCT cFROM sbtest%u WHERE id BETWEEN ? AND ? ORDER BY c",      t.INT, t.INT},index_updates = {      "UPDATE sbtest%uSET k=k+1 WHERE id=?",      t.INT},non_index_updates = {      "UPDATE sbtest%uSET c=? WHERE id=?",      {t.CHAR, 120}, t.INT},deletes = {      "DELETE FROMsbtest%u WHERE id=?",      t.INT},inserts = {      "INSERT INTOsbtest%u (id, k, c, pad) VALUES (?, ?, ?, ?)",      t.INT, t.INT, {t.CHAR,120}, {t.CHAR, 60}}
测试数据量:

--tables=18 --table-size=10000000

表占用操作系统存储空间:36G
测试脚本:

测试的sysbench 的线程从64 到900 ,每个线程案列执行10分钟,每个场景间断测试工夫140分钟。

Kunlun-Storage:

sysbench /usr/local/share/sysbench/oltp_write_only.lua--db-driver=mysql --mysql-host=172.31.41.115 --mysql-port=6001 --mysql-user=pgx --mysql-password=pgx_pwd--mysql-db=vpgtest --tables=18 --table-size=10000000 --report-interval=10--threads=64 --time=600  run sysbench/usr/local/share/sysbench/oltp_update_index.lua --db-driver=mysql --mysql-host=172.31.41.115  --mysql-port=6001 --mysql-user=pgx--mysql-password=pgx_pwd --mysql-db=vpgtest --tables=18 --table-size=10000000--report-interval=10 --threads=64 --time=600  run sysbench/usr/local/share/sysbench/oltp_update_non_index.lua  --db-driver=mysql--mysql-host=172.31.41.115 --mysql-port=6001 --mysql-user=pgx --mysql-password=pgx_pwd--mysql-db=vpgtest --tables=18 --table-size=10000000 --report-interval=10--threads=64 --time=600  run 

Threads 变动范畴:64-128-192-......900

PostgreSQL:

sysbench/usr/local/share/sysbench/oltp_read_write.lua --db-driver=pgsql--pgsql-host=172.31.44.208 --pgsql-port=5432 --pgsql-user=postgres --pgsql-password=postgres--pgsql-db=postgres --tables=18 --table-size=10000000 --report-interval=10--threads=64  --time=600 run sysbench /usr/local/share/sysbench/oltp_update_index.lua--db-driver=pgsql --pgsql-host=172.31.44.208 --pgsql-port=5432 --pgsql-user=postgres --pgsql-password=postgres--pgsql-db=postgres --tables=18 --table-size=10000000 --report-interval=10--threads=64  --time=600 runsysbench/usr/local/share/sysbench/oltp_update_non_index.lua --db-driver=pgsql--pgsql-host=172.31.44.208 --pgsql-port=5432 --pgsql-user=postgres --pgsql-password=postgres--pgsql-db=postgres --tables=18 --table-size=10000000 --report-interval=10--threads=640  --time=600  run

Threads 变动范畴:64-128-192-......900

四、 AWS 云上环境测试后果

oltp_write_only 测试


oltp_update_index 测试

oltp_update_non_index 测试

五、本地部署测试后果

oltp_write_only 测试


oltp_update_index 测试


oltp_update_non_index 测试


oltp_read_write 测试

六、测试后果及总结

1. 在OLTP write-only、oltp -read-write和OLTP update_index场景下,Kunlun-Storage性能显著优于PostgreSQL。

须要强调的是,PostgreSQL只有更新任何一个索引字段,都须要在所有索引中插入新的索引行指向新版本的数据行,此时HOTupdate无奈发挥作用。

因而,update_index的性能会大幅落后于MySQL。

在理论生产零碎中,更新到索引列是十分常见的景象,特地是还有Vacuum带来的IO耗费大幅增长,所以PostgreSQL的通用的写入性能就绝对较差。

2. 在OLTP update_non_index场景下,PostgreSQL的tps性能高于Kunlun-Storage,但95 percent delay也高于KunlunStorage,这表明在更新的字段不是索引字段的场景下,因为PostgreSQL通过放弃 heap页面半空,能够实现大多数行的更新是HOT update,也就是不须要插入索引行,间接在与旧行同一个heap页面中写入新版本行数据即可,因而比均匀的QPS比Kunlun-Storage高5%~30%。

不过从测试后果能够看到,PostgreSQL的QPS和延时的稳定比拟大,因为无奈做HOT update的那些更新语句的延时也会大幅提高,也就导致PostgreSQL95%延时反而比MySQL大10%到40%左右。

因为大多数理论应用场景下是无奈防止更新索引字段的,并且即便对于不更新索引字段的语句,HOT update也不能保障大概率产生(只有不更新任何索引字段并且heap页面有足够空间存储那个被更新的行的新版本的时候 HOT Update 能力产生),因而PostgreSQL的这种性能劣势的覆盖面过于狭隘。

3. PostgreSQL在负载动态变化过程中,有显著的提早抖动,而Kunlun-Storage性能曲线绝对安稳.

-END-

昆仑数据库是一个HTAP NewSQL分布式数据库管理系统,能够满足用户对海量关系数据的存储管理和利用的全方位需要。
利用开发者和DBA的应用昆仑数据库的体验与单机MySQL和单机PostgreSQL简直完全相同,因为首先昆仑数据库反对PostgreSQL和MySQL双协定,反对规范SQL:2011的 DML 语法和性能以及PostgreSQL和MySQL对规范 SQL的扩大。同时,昆仑数据库集群反对程度弹性扩容,数据主动拆分,分布式事务处理和分布式查询处理,强壮的容错容灾能力,欠缺直观的监测剖析告警能力,集群数据备份和复原等 罕用的DBA 数据管理和操作。所有这些性能无需任何利用零碎侧的编码工作,也无需DBA人工染指,不停服不影响业务失常运行。
昆仑数据库具备全面的OLAP 数据分析能力,通过了TPC-H和TPC-DS规范测试集,能够实时剖析最新的业务数据,帮忙用户发掘出数据的价值。昆仑数据库反对私有云和公有云环境的部署,能够与docker,k8s等云基础设施无缝合作,能够轻松搭建云数据库服务。
请拜访 http://www.zettadb.com/ 获取更多信息并且下载昆仑数据库软件、文档和材料。
KunlunDB我的项目已开源
【GitHub:】
https://github.com/zettadb
【Gitee:】
https://gitee.com/zettadb