OFF 文件记录的是多面体信息,将其内容解析为 Mesh
构造后,便可基于后者为多面体网格结构突围球。
球体
用泛型的构造体定义球体:
struct Sphere<T> { n: usize, // 维度 center: Vec<T>, // 核心 radius: T // 半径}
而后为该构造定义 new` 办法:
impl<T> Sphere<T> { fn new(n: usize) -> Sphere<T> { Sphere{n: n, center: vec![0.0; n], radius: 0.0} }}
假使调用该办法,rustc 会有以下指摘:
vec![...]
的第一个参数的类型本该是T
,不是浮点型;- 为
Sphere
的radius
成员赋的值,其类型应该是T
,不是浮点型; vec![...]
的第一个参数须要实现std::Clone
Trait。
前两个指摘,是心愿咱们为 T
定义 0,因为 rustc 不晓得 T
类型的 0 值的模式。第三个指摘是心愿为 T
减少束缚。要解决这些问题,我能想出的计划是
use std::clone;struct Sphere<T> { n: usize, center: Vec<T>, radius: T}trait Zero { fn zero() -> Self;}impl Zero for f64 { fn zero() -> Self { 0.0 }}impl<T: Zero + clone::Clone> Sphere<T> { fn new(n: usize) -> Sphere<T> { Sphere{n: n, center: vec![T::zero(); n], radius: T::zero()} }}
基于以上代码定义的球体,可能反对以下语句:
let sphere: Sphere<f64> = Sphere::new(3);
趁热打铁,再为球体实现 Display
Trait 吧,当初曾经轻车熟路了,
use std::fmt;impl<T: fmt::Display> fmt::Display for Sphere<T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let mut info = String::new(); info += "球体:"; info += format!("维度 {};", self.n).as_str(); info += format!("核心 (").as_str(); for i in 0 .. self.n - 1 { info += format!("{}, ", self.center[i]).as_str(); } info += format!("{});", self.center[self.n - 1]).as_str(); info += format!("半径 {}.", self.radius).as_str(); write!(f, "{}", info) }}
网格的核心
Mesh
实例的核心即突围球的核心。当初为 Mesh
构造减少 center
办法,用于计算 Mesh
实例的核心,以下是该过程的根本泛型框架:
impl<T: Zero + clone::Clone> Mesh<T> { fn center(&self) -> Vec<T> { let mut x = vec![T::zero(); self.n]; // 计算 self 的核心,将后果存于 x return x; }}
我敢肯定,rustc 会依据具体的网格核心计算代码持续要求我为 T
减少类型束缚,而且这个过程也会让我有些焦虑。假使我毫不焦虑,而且对 rustc 有所感谢,认为它饱含圣光,指出了我的代码的疏漏,那我敢肯定,我被 rustc PUA 了。
网格的核心,能够取为网格顶点汇合的均值点:
// 计算 self 的核心,将后果存于 xfor x_i in &self.points { for j in 0 .. self.n { x[j] += x_i[j] / self.points.len() as T; }}
对于上述代码,rustc 认为:
- 它不知该如何进行类型
T
的除法运算; self.n
为usize
类型,它无奈应用as
转换为T
类型,因为as
只能用于根本类型的转换。
对于第一个问题,为 T
减少 std::ops::Div<Output = T>
束缚便可解决。对于第二个问题,一种可行的计划是,为 T
减少 std::convert::From<usize>
束缚,而后将 self.points.len() as T
批改为 self.points.len().into()
,以实现 self.points.len()
的类型从 usize
到 T
的转换。于是,Mesh
的 center
办法的代码变为
impl<T: Zero + clone::Clone + std::ops::Div<Output = T> + std::convert::From<usize>> Mesh<T> { fn center(&self) -> Vec<T> { let mut x = vec![T::zero(); self.n]; // 计算 self 的核心,将后果存于 x for x_i in &self.points { for j in 0 .. self.n { x[j] += x_i[j] / self.points.len().into(); } } return x; }}
然而,rustc 意犹未尽,持续认为它不晓得该怎么用 +=
解决 T
类型的值,于是我须要持续为 T
减少束缚 std::ops::AddAssign
,后果 Mesh
的 center
办法的代码变成
impl<T: Zero + clone::Clone + std::ops::Div<Output = T> + std::convert::From<usize> + std::ops::AddAssign> Mesh<T> { fn center(&self) -> Vec<T> { let mut x = vec![T::zero(); self.n]; // 计算 self 的核心,将后果存于 x for x_i in &self.points { for j in 0 .. self.n { x[j] += x_i[j] / self.points.len().into(); } } return x; }}
这样便高枕无忧了吗?当然不是,rustc 会持续认为 x[j] += x_i[j] / ...
里的 x_i[j]
无奈挪动,起因是它对应的类型 T
未实现 copy
Trait,因而不得不持续为 T
追加 std::marker::Copy
束缚。当初,Mesh
的 center
办法的代码变为
impl<T: Zero + clone::Clone + std::ops::Div<Output = T> + std::convert::From<usize> + std::ops::AddAssign + std::marker::Copy> Mesh<T> { fn center(&self) -> Vec<T> { let mut x = vec![T::zero(); self.n]; // 计算 self 的核心,将后果存于 x for x_i in &self.points { for j in 0 .. self.n { x[j] += x_i[j] / self.points.len().into(); } } return x; }}
而后,rustc 不再说什么,这时我才有余力看出代码里存在一处性能问题须要解决,即
for x_i in &self.points { for j in 0 .. self.n { x[j] += x_i[j] / self.points.len().into(); }}
须要批改为
let n: T = self.points.len().into();for x_i in &self.points { for j in 0 .. self.n { x[j] += x_i[j] / n; }}
以下代码可用于测试 Mesh
的 center
办法是否真的能算出多面体的核心:
let dim = 3;let mut mesh: Mesh<f64> = Mesh::new(dim);mesh.load("foo.off");let center: Vec<f64> = mesh.center();let mut sphere: Sphere<f64> = Sphere::new(dim);for i in 0 .. dim { sphere.center[i] = center[i];}println!("{}", sphere);
然而,rustc 编译上述代码时,会很傲骄地说 f64: From<usize>
没实现,也就是说 Rust 规范库里为 f64
类型实现了一大堆的的 From<...>
,然而唯独没实现 From<usize
,亦即 Mesh
的 center
办法里的代码
let n: T = self.points.len().into();
无奈通过编译。于是,之前的一堆致力,解体于这最初一片无辜的雪花。为了挽回败局,我只好在代码里用了武当派的梯云纵,左脚踩右脚,右脚踩左脚,扶摇直上……
impl<T: Zero + clone::Clone + std::ops::Div<Output = T> + std::convert::From<f64> + std::ops::AddAssign + std::marker::Copy> Mesh<T> { fn center(&self) -> Vec<T> { let mut x = vec![T::zero(); self.n]; // 计算 self 的核心,将后果存于 x let n: T = (self.points.len() as f64).into(); for x_i in &self.points { for j in 0 .. self.n { x[j] += x_i[j] / n; } } return x; }}
网格的半径
网格的半径是网格顶点到网格核心的最大间隔,为便于实现该过程,先定义一个泛型函数,用于计算两点间的间隔:
fn distance<T>(a: &Vec<T>, b: &Vec<T>) -> T { let na = a.len(); let nb = b.len(); assert_eq!(na, nb); let mut d: T = T::zero(); for i in 0 .. na { let t = a[i] - b[i]; d += t * t; } return d.sqrt();}
通过 rustc 的一番调教,distance
函数变为
fn distance<T: Zero + std::ops::Sub<Output = T> + std::ops::Mul<Output = T> + std::ops::AddAssign + Copy>(a: &Vec<T>, b: &Vec<T>) -> T { let na = a.len(); let nb = b.len(); assert_eq!(na, nb); let mut d: T = T::zero(); for i in 0 .. na { let t = a[i] - b[i]; d += t * t; } return d.sqrt();}
即便如此,该函数仍然无奈通过编译,因为 rustc 认为它无奈确定 T
类型的实例有 sqrt
办法。既然天不佑我,那就别怪我代码写得丑:
trait Sqrt<T> { fn sqrt(self) -> T;}fn distance<T: Zero + std::ops::Sub<Output = T> + std::ops::Mul<Output = T> + std::ops::AddAssign + Copy + Sqrt<T>>(a: &Vec<T>, b: &Vec<T>) -> T { let na = a.len(); let nb = b.len(); assert_eq!(na, nb); let mut d: T = T::zero(); for i in 0 .. na { let t = a[i] - b[i]; d += t * t; } return d.sqrt();}
若点的坐标值是 f64
类型,只需为该类型实现 Sqrt
Trait,
impl Sqrt<f64> for f64 { fn sqrt(self) -> f64 { self.sqrt() }}
便可应用 distance
计算两点间隔,例如
let a: Vec<f64> = vec![0.0, 0.0, 0.0];let b: Vec<f64> = vec![1.0, 1.0, 1.0];println!("{}", distance(&a, &b));
后果为 1.7320508075688772
。
有了 distance
函数,便可计算网格半径:
impl <T: Zero + std::ops::AddAssign + std::marker::Copy + Sqrt<T> + std::ops::Sub<Output = T> + std::ops::Mul<Output = T> + std::cmp::PartialOrd> Mesh<T> { fn radius(&self, center: &Vec<T>) -> T { let mut r = T::zero(); for x in &self.points { let d = distance(x, center); if r < d { r = d; } } return r; }}
要写出上述代码,天然少不了 rustc 对类型的 T
各种具体束缚的谆谆告诫……
网格的突围球
当初,将 Mesh
的 center
和 radius
办法合并为 bounding_sphere
:
impl<T: Zero + clone::Clone + std::ops::Div<Output = T> + std::convert::From<f64> + std::ops::AddAssign + std::marker::Copy + Sqrt<T> + std::ops::Sub<Output = T> + std::ops::Mul<Output = T> + std::cmp::PartialOrd> Mesh<T> { fn bounding_sphere(&self) -> Sphere<T> { let mut sphere: Sphere<T> = Sphere::new(self.n); // 计算突围球核心 let n: T = (self.points.len() as f64).into(); for x_i in &self.points { for j in 0 .. self.n { sphere.center[j] += x_i[j] / n; } } // 计算突围球半径 for x in &self.points { let d = distance(x, &sphere.center); if sphere.radius < d { sphere.radius = d; } } return sphere; }}
以下为 Mesh
的 bounding_sphere
办法的调用示例:
let dim = 3;let mut mesh: Mesh<f64> = Mesh::new(dim);mesh.load("foo.off");let sphere: Sphere<f64> = mesh.bounding_sphere();println!("{}", sphere);
Rust 泛型之我见
Rust 的泛型的最大用途是,警示我,最好别用泛型,最好别用泛型,最好别用泛型。
小结
use std::{fmt, clone, ops, convert, marker, cmp};use std::path::Path;use std::fs::File;use std::io::{BufRead, BufReader};use std::str::FromStr;use std::num::ParseFloatError;use std::ops::Index;trait Zero { fn zero() -> Self;}impl Zero for f64 { fn zero() -> Self { 0.0 }}trait Length { fn len(&self) -> usize;}impl<T> Length for Vec<T> { fn len(&self) -> usize { return self.len(); }}struct Mesh<T> { n: usize, // 维度 points: Vec<Vec<T>>, // 点表 facets: Vec<Vec<usize>> // 面表}impl<T: FromStr<Err = ParseFloatError>> Mesh<T> { fn new(n: usize) -> Mesh<T> { return Mesh {n: n, points: Vec::new(), facets: Vec::new()}; } fn load(&mut self, path: &str) { let path = Path::new(path); let file = File::open(path).unwrap(); let buf = BufReader::new(file); let mut lines_iter = buf.lines().map(|l| l.unwrap()); assert_eq!(lines_iter.next(), Some(String::from("OFF"))); let second_line = lines_iter.next().unwrap(); let mut split = second_line.split_whitespace(); let n_of_points: usize = split.next().unwrap().parse().unwrap(); let n_of_facets: usize = split.next().unwrap().parse().unwrap(); for _i in 0 .. n_of_points { let line = lines_iter.next().unwrap(); let mut p: Vec<T> = Vec::new(); for x in line.split_whitespace() { p.push(x.parse().unwrap()); } self.points.push(p); } for _i in 0 .. n_of_facets { let line = lines_iter.next().unwrap(); let mut f: Vec<usize> = Vec::new(); let mut split = line.split_whitespace(); let n:usize = split.next().unwrap().parse().unwrap(); assert_eq!(n, self.n); for x in split { f.push(x.parse().unwrap()); } assert_eq!(n, f.len()); self.facets.push(f); } }}struct Prefix<T> { status: bool, body: fn(&T) -> String}impl<T> Prefix<T> { fn new() -> Prefix<T> { Prefix{status: false, body: |_| "".to_string()} }}fn matrix_fmt<T: Length + Index<usize>>(v: &Vec<T>, prefix: Prefix<T>) -> Stringwhere <T as Index<usize>>::Output: fmt::Display, <T as Index<usize>>::Output: Sized { let mut s = String::new(); for x in v { let n = x.len(); if prefix.status { s += (prefix.body)(x).as_str(); } for i in 0 .. n { if i == n - 1 { s += format!("{}\n", x[i]).as_str(); } else { s += format!("{} ", x[i]).as_str(); } } } return s;}impl<T: fmt::Display> fmt::Display for Mesh<T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let mut info = String::new(); info += format!("OFF\n").as_str(); info += format!("{0} {1} 0\n", self.points.len(), self.facets.len()).as_str(); info += matrix_fmt(&self.points, Prefix::new()).as_str(); info += matrix_fmt(&self.facets, Prefix{status: true, body: |x| format!("{} ", x.len())}).as_str(); write!(f, "{}", info) }}trait Sqrt<T> { fn sqrt(self) -> T;}impl Sqrt<f64> for f64 { fn sqrt(self) -> f64 { self.sqrt() }}fn distance<T: Zero + ops::Sub<Output = T> + ops::Mul<Output = T> + ops::AddAssign + Copy + Sqrt<T>>(a: &Vec<T>, b: &Vec<T>) -> T { let na = a.len(); let nb = b.len(); assert_eq!(na, nb); let mut d: T = T::zero(); for i in 0 .. na { let t = a[i] - b[i]; d += t * t; } return d.sqrt();}struct Sphere<T> { n: usize, center: Vec<T>, radius: T}impl<T: Zero + clone::Clone> Sphere<T> { fn new(n: usize) -> Sphere<T> { Sphere{n: n, center: vec![T::zero(); n], radius: T::zero()} }}impl<T: fmt::Display> fmt::Display for Sphere<T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let mut info = String::new(); info += "球体:"; info += format!("维度 {};", self.n).as_str(); info += format!("核心 (").as_str(); for i in 0 .. self.n - 1 { info += format!("{}, ", self.center[i]).as_str(); } info += format!("{});", self.center[self.n - 1]).as_str(); info += format!("半径 {}.", self.radius).as_str(); write!(f, "{}", info) }}impl<T: Zero + clone::Clone + ops::Div<Output = T> + convert::From<f64> + ops::AddAssign + marker::Copy + Sqrt<T> + ops::Sub<Output = T> + ops::Mul<Output = T> + cmp::PartialOrd> Mesh<T> { fn bounding_sphere(&self) -> Sphere<T> { let mut sphere: Sphere<T> = Sphere::new(self.n); // 计算突围球核心 let n: T = (self.points.len() as f64).into(); for x_i in &self.points { for j in 0 .. self.n { sphere.center[j] += x_i[j] / n; } } // 计算突围球半径 for x in &self.points { let d = distance(x, &sphere.center); if sphere.radius < d { sphere.radius = d; } } return sphere; }}fn main() { let dim = 3; let mut mesh: Mesh<f64> = Mesh::new(dim); mesh.load("foo.off"); let sphere: Sphere<f64> = mesh.bounding_sphere(); println!("{}", sphere);}