背景介绍

某一天早上来到公司,接到业务同学反馈,线上某个SQL之前查问速度很快,从某个工夫点开始查问速度忽然变慢了,心愿DBA帮忙查看下。业务同学反馈的原话如下:

看到这个问题,我第一工夫询问了业务对这个表的基本操作,失去的反馈如下:

  • 这个表的SQL语法没有产生过变动
  • 这个表的表构造近期未产生变更
  • 这个表是个日志表,近期只有写入insert,没有大量delete、update操作

剖析过程

1、SQL剖析

首先,咱们来看下这条SQL(脱敏之后):

SELECT

xxx, xxx, xxx, xxx, ....

FROM log\_xxxx\_2022\_4

WHERE  1=1

AND \`l\_mid\` = 'xxxxxxx-E527B8CD-84B-960'

AND \`l\_opertime\` < '2022-04-20 10:56:37'

AND \`l\_opertime\` >= '2022-03-20 10:56:37'

ORDER BY \`l\_opertime\` DESC LIMIT 0,20;

SQL的语义自身比较简单,是一个单表查问,不波及简单查问:

从某一张表外面,利用l\_mid和l\_opertime这两个字段作为过滤条件,输出表外面的其余字段,并依照l\_opertime排序。

2、表构造剖析

这样一条简略的SQL,如果有索引的话,应该不会呈现问题才对,咱们看下表构造:

show index from  log_xxxx_2022_4;+-----------------+------------+---------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+-----------+| Table           | Non_unique | Key_name            | Seq_in_index | Column_name   | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | Visible | Expression | Clustered |+-----------------+------------+---------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+-----------+| log_xxxx_2022_4 |          0 | PRIMARY             |            1 | l_id          | A         |           0 |     NULL | NULL   |      | BTREE      |         |               | YES     | NULL       | YES       || log_xxxx_2022_4 |          1 | l_oper              |            1 | l_oper        | A         |           0 |     NULL | NULL   |      | BTREE      |         |               | YES     | NULL       | NO        || log_xxxx_2022_4 |          1 | l_channel           |            1 | l_channel     | A         |           0 |     NULL | NULL   |      | BTREE      |         |               | YES     | NULL       | NO        || log_xxxx_2022_4 |          1 | l_xxxxid            |            1 | l_xxxxid      | A         |           0 |     NULL | NULL   |      | BTREE      |         |               | YES     | NULL       | NO        || log_xxxx_2022_4 |          1 | l_mid               |            1 | l_mid         | A         |           0 |     NULL | NULL   |      | BTREE      |         |               | YES     | NULL       | NO        || log_xxxx_2022_4 |          1 | l_user              |            1 | l_user        | A         |           0 |     NULL | NULL   |      | BTREE      |         |               | YES     | NULL       | NO        || log_xxxx_2022_4 |          1 | l_opertime          |            1 | l_opertime    | A         |           0 |     NULL | NULL   |      | BTREE      |         |               | YES     | NULL       | NO        || log_xxxx_2022_4 |          1 | l_xxxstatus         |            1 | l_xxxstatus   | A         |           0 |     NULL | NULL   |      | BTREE      |         |               | YES     | NULL       | NO        || log_xxxx_2022_4 |          1 | index_l_submit_time |            1 | l_submit_time | A         |           0 |     NULL | NULL   |      | BTREE      |         |               | YES     | NULL       | NO        |+-----------------+------------+---------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+-----------+9 rows in set (0.00 sec)

从上述索引构造,能够看进去,咱们的l\_mid字段和l\_opertime字段,都有索引。

从索引原理上看,这个SQL的执行打算至多应该是一个IndexRangeScan(索引范畴扫描)。

3、执行打算剖析

传统的MySQL中,应用Explain语句来剖析MySQL的执行打算。在TiDB中,咱们能够应用2种办法查看TiDB的执行打算:

a、Explain + SQL :这种办法不会真正执行语句,会间接返回执行打算

b、Explain Analyze + SQL : 这种办法会执行SQL语句,并返回SQL的执行打算

咱们应用上述办法b来查看执行打算(起因是这种办法能够看到SQL的执行工夫),上述SQL的执行打算如下:

+----------------------------------+----------+----------+-----------+-----------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------+----------+------+| id                               | estRows  | actRows  | task      | access object                                       | execution info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | operator info                                                                        | memory   | disk |+----------------------------------+----------+----------+-----------+-----------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------+----------+------+| Limit_12                         | 20.00    | 0        | root      |                                                     | time:26.2s, loops:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | offset:0, count:20                                                                   | N/A      | N/A  || └─IndexLookUp_28                 | 20.00    | 0        | root      |                                                     | time:26.2s, loops:1, index_task: {total_time: 26.1s, fetch_handle: 1.95s, build: 3.39s, wait: 20.7s}, table_task: {total_time: 2m6.3s, num: 1043, concurrency: 5}                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      | 167.2 MB | N/A  ||   ├─IndexRangeScan_25(Build)     | 20000.00 | 21180838 | cop[tikv] | table:log_xxxx_2022_4, index:l_opertime(l_opertime) | time:848.9ms, loops:20703, cop_task: {num: 23, max: 1.42s, min: 2.14ms, avg: 712.3ms, p95: 1.15s, max_proc_keys: 969873, p95_proc_keys: 960000, tot_proc: 15.1s, tot_wait: 41ms, rpc_num: 23, rpc_time: 16.4s, copr_cache_hit_ratio: 0.04}, tikv_task:{proc max:763ms, min:31ms, p80:729ms, p95:747ms, iters:20788, tasks:23}, scan_detail: {total_process_keys: 20220838, total_process_keys_size: 930158548, total_keys: 20220861, rocksdb: {delete_skipped_count: 0, key_skipped_count: 20220839, block: {cache_hit_count: 12975, read_count: 28, read_byte: 1.35 MB}}}             | range:[2022-03-20 10:56:37,2022-04-20 10:56:37), keep order:true, desc, stats:pseudo | N/A      | N/A  ||   └─Selection_27(Probe)          | 20.00    | 0        | cop[tikv] |                                                     | time:1m57.9s, loops:1043, cop_task: {num: 1441, max: 891.8ms, min: 848.6µs, avg: 91.2ms, p95: 286.5ms, max_proc_keys: 20992, p95_proc_keys: 20480, tot_proc: 1m51.3s, tot_wait: 17.1s, rpc_num: 1441, rpc_time: 2m11.3s, copr_cache_hit_ratio: 0.00}, tikv_task:{proc max:235ms, min:0s, p80:78ms, p95:98ms, iters:27477, tasks:1441}, scan_detail: {total_process_keys: 21180838, total_process_keys_size: 7841770073, total_keys: 21184733, rocksdb: {delete_skipped_count: 0, key_skipped_count: 55260873, block: {cache_hit_count: 239289, read_count: 83, read_byte: 622.7 KB}}}  | eq(comment5_log.log_xxxx_2022_4.l_mid, "625F70C0-ABD4F004-E527B8CD-84B-960")         | N/A      | N/A  ||     └─TableRowIDScan_26          | 20000.00 | 21180838 | cop[tikv] | table:log_xxxx_2022_4                               | tikv_task:{proc max:231ms, min:0s, p80:76ms, p95:95ms, iters:27477, tasks:1441}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | keep order:false, stats:pseudo                                                       | N/A      | N/A  |+----------------------------------+----------+----------+-----------+-----------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------+----------+------+5 rows in set (26.15 sec)

上述SQL的执行工夫是:26.15 sec

咱们对TiDB的执行打算进行剖析:

id 列:算子名称.

从图中能够看出,咱们以后的SQL算子蕴含:

IndexLookUp:先汇总 Build 端 TiKV 扫描上来的 RowID,再去 Probe 端上依据这些 RowID 准确地读取 TiKV 上的数据。

IndexFullScan:另一种“全表扫描”,扫的是索引数据,不是表数据。

TableRowIDScan:依据下层传递下来的 RowID 扫描表数据。时常在索引读操作后检索符合条件的行。

estRows 列:显示TiDB预计会解决的行数

actRows 列:显示TiDB算子理论输入的数据条数

预估扫描行数最多是2w行,然而理论的输入条数是2000w行。

task 列:显示算子在执行语句时的所在位置,root代表tidb,cop代表tikv

access object 列:代表被拜访的表对象和索引

execution info 列:算子的理论执行信息,蕴含执行工夫等

这部分内容能够看到每个步骤的执行工夫,然而不是特地直观,前面咱们会通过Dashboard页面去剖析执行工夫。

operator info 列:显示拜访表、分区、索引的其余信息

range: [2022-03-20 10:56:37,2022-04-20 10:56:37] 示意查问的 WHERE 字句 (l\_opertime = 2022-04-20 10:56:37) 被下推到了 TiKV,对应的 task 为 cop[tikv]

keep order:true 示意这个查问须要TiKV依照程序返回后果

stats:pseudo 它示意estRows显示的预估行数可能不准,TiDB定期在后盾更新统计信息,也能够通过Analyze table 来手动更新信息。

memory 列:算子占用的内存空间大小

disk 列:算子占用磁盘空间的大小

4、TiDB DashBoard剖析

上述Explain Analyze剖析的执行打算内容,execution info列不够直观。咱们看下TiDB 的Dashboard,其实也能发现一些端倪。

进入TiDB 的 Dashboard页面--->点击左侧的慢查问--->依照SQL语句(或者提炼的SQL指纹)进行搜寻--->查看SQL执行耗时状况,看到相似的SQL执行耗时状况如下:

能够看到,大部分执行耗时都在Coprocessor执行耗时阶段,其余阶段占用的工夫非常少。

值得注意的是,Coprocessor累计执行耗时看起来大于SQL执行工夫,这个是因为TiKV 会并行处理工作,因而累计执行耗时不是天然流逝工夫

咱们再看看SQL的根本信息:

从SQL根本信息上,也能够看到,以后SQL应用的统计信息是pseudo,而pseudo代表统计信息不精确,就有可能导致TiDB基于老本的执行打算抉择谬误。

解决办法

有了上述的实践根底,问题的解决就变得简略了。

依据官网文档形容,咱们应用Analyze table log\_xxxx\_2022\_4 来从新收集下这个表的统计信息,而后从新执行查问:

analyze table log_cmnt_2022_4;Query OK, 0 rows affected, 1 warning (51.11 sec)再次利用Explain Analyze查看SQL执行打算:     +----------------------------------+---------+---------+-----------+-------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------+-----------+------+| id                               | estRows | actRows | task      | access object                             | execution info                                                                                                                                                                                                                                                                                                                                                                                | operator info                                                                                                                                    | memory    | disk |+----------------------------------+---------+---------+-----------+-------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------+-----------+------+| TopN_9                           | 2.15    | 0       | root      |                                           | time:977µs, loops:1                                                                                                                                                                                                                                                                                                                                                                           | coxxxx5_log.log_xxxx_2022_4.l_opertime:desc, offset:0, count:20                                                                                 | 0 Bytes   | N/A  || └─IndexLookUp_24                 | 2.15    | 0       | root      |                                           | time:939.3µs, loops:2,                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                  | 236 Bytes | N/A  ||   ├─IndexRangeScan_17(Build)     | 2.15    | 0       | cop[tikv] | table:log_xxxx_2022_4, index:l_mid(l_mid) | time:822.3µs, loops:1, cop_task: {num: 1, max: 749.8µs, proc_keys: 0, tot_proc: 1ms, rpc_num: 1, rpc_time: 734.8µs, copr_cache_hit_ratio: 0.00}, tikv_task:{time:1ms, loops:1}, scan_detail: {total_process_keys: 0, total_process_keys_size: 0, total_keys: 1, rocksdb: {delete_skipped_count: 0, key_skipped_count: 0, block: {cache_hit_count: 11, read_count: 0, read_byte: 0 Bytes}}}    | range:["625F70C0-ABD4F004-E527B8CD-84B-960","625F70C0-ABD4F004-E527B8CD-84B-960"], keep order:false                                              | N/A       | N/A  ||   └─TopN_23(Probe)               | 2.15    | 0       | cop[tikv] |                                           |                                                                                                                                                                                                                                                                                                                                                                                               | comment5_log.log_xxxx_2022_4.l_opertime:desc, offset:0, count:20                                                                                 | N/A       | N/A  ||     └─Selection_19               | 2.15    | 0       | cop[tikv] |                                           |                                                                                                                                                                                                                                                                                                                                                                                               | ge(comxxxx5_log.log_xxxx_2022_4.l_opertime, 2022-03-20 10:56:37.000000), lt(coxxxxx5_log.log_xxxx_2022_4.l_opertime, 2022-04-20 10:56:37.000000) | N/A       | N/A  ||       └─TableRowIDScan_18        | 2.15    | 0       | cop[tikv] | table:log_xxxx_2022_4                     |                                                                                                                                                                                                                                                                                                                                                                                               | keep order:false                                                                                                                                 | N/A       | N/A  |+----------------------------------+---------+---------+-----------+-------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------+-----------+------+6 rows in set (0.00 sec)

从最新的SQL执行打算中,咱们不难发现:

1、执行打算中,预估的行数estRows,从一开始的2w行到当初的2.15行,理论执行行数actRows,从一开始的2000w行,到当初的0行,有了很大的一个改善。

2、SQL的执行工夫变成了0.00s,意味着执行工夫在10ms之内。

当初咱们比照下执行工夫:

统计信息收集之前:SQL执行26s

统计信息收集之后:SQL执行0.00s

一个Analyze操作,让整个SQL执行工夫,足足翻了1000倍还多!!!

批改之后,业务同学反馈查问速度晋升显著,监控肉眼可见:

Pseudo状态的SQL如何被动排查?如何解决?

从咱们上述案例中能够发现,如果一个表的统计信息采纳了pseudo,很可能造成查问慢的状况。因而,在理论利用中,咱们须要对应用了pseudo统计信息的SQL进行摸排,能够应用上面的办法来进行摸排:

计划1、SQL排查并手动analyze

select query, query_time, statsfrom information_schema.slow_querywhere is_internal = falseand stats like '%pseudo%';

应用上述SQL查找到所有的应用了pseudo统计信息的SQL,并对它们拜访的表,手动做一次analyze table操作。

上述SQL的输入样例如下:

+-----------------------------+-------------+---------------------------------+| query                       | query_time  | stats                           |+-----------------------------+-------------+---------------------------------+| select * from t1 where a=1; | 0.302558006 | t1:pseudo                       || select * from t1 where a=2; | 0.401313532 | t1:pseudo                       || select * from t1 where a>2; | 0.602011247 | t1:pseudo                       || select * from t1 where a>3; | 0.50077719  | t1:pseudo                       || select * from t1 join t2;   | 0.931260518 | t1:407872303825682445,t2:pseudo |+-----------------------------+-------------+---------------------------------+

计划2、批改参数:pseudo-estimate-ratio

这个参数代表批改的行数/表的总行数的比值,超过该值的时候,零碎会认为统计信息曾经过期,就会应用pseudo,这个值的默认值是0.8,最小值是0,最大值是1。它是统计信息是否生效的判断规范

能够将这个参数调整成1,从而让TiKV执行SQL的时候不抉择pseudo统计信息。

计划3、批改参数:tidb_enable_pseudo_for_outdated_stats

这个变量用来管制TiDB优化器在某一张表上的统计信息过期之后的行为,默认值是On。

如果应用默认值On,在某张表的统计信息过期之后,代表优化器认为以后表除了总行数之外,其余的统计信息曾经生效,所以会采纳pseudo统计信息;

如果应用Off,即便一张表上的统计信息生效,也会应用以后表的统计信息,不会应用pseudo。如果你的表更新频繁,又没有即便对表进行analyze table,那么倡议应用off选项

计划4、TiDB Dashboard排查

登录TiDB的Dashboard,点击TiDB--->statistics--->pseudo estimation OPS面板即可。

如果监控中应用Pseudo统计信息的SQL过多,那么阐明咱们的统计信息存在大量生效的状况,须要对这类SQL拜访的表从新进行信息统计。

总结

到这里,下面的问题算是解决了,咱们也晓得了如何对应用了Pseudo统计信息的SQL进行排查了。

咱们先尝试写一些总结:

1、遇到慢查问,咱们个别须要进行一系列剖析,包含SQL历史运行状态理解、SQL语义剖析、SQL拜访的表对应的表构造剖析、执行打算剖析等等

2、TiDB的Dashboard中的慢日志模块曾经帮用户整顿了相干信息,要学会借助已有的性能去排查问题。

3、问题解决后,还应该想方法从源头上杜绝问题再次发生。

其实如果更近一步去思考,既然TiDB自身会进行统计信息收集,那么它的收集策略又是怎么的呢???为什么它有收集统计信息的性能,咱们的表还会应用到pseudo统计信息呢???这些,其实都是值得思考的问题。这里我给出一点官网文档的提醒:

对于统计信息的更多细节,期待大家在实践中去摸索,去发现。:)

原作者:Asiaye 发表工夫:2022/4/26 原文链接:https://tidb.net/blog/df697598