BlockCanary源码解析

在解说BlockCanary源码之前,咱们还是须要将一些前置的知识点。本文不讲Handler的原理了,不太懂的同学本人去百度看一下吧。

什么是卡顿

在解说卡顿问题之前,咱们须要讲一下帧率这个概念。帧率是以帧称为单位的位图图像间断呈现在显示器上的频率。我将一个例子,电影播放。电影其实就是很多张照片(帧)的一个汇合,那为什么看起来是一个间断的过程呢?因为电影每一秒呈现过的图片不止一张。实际上电影个别一秒呈现的图片张数会在20-30张。假如电影一秒呈现了24张图片,那么这个电影的帧率就是24。帧率就是一秒中,呈现了多少帧。

晓得了什么是帧率,那么问题来了,为什么会呈现卡顿呢?卡顿在咱们的视觉下面的体现就是本来是晦涩的动画画面,当初变的不晦涩了。咱们下面讲过,动画其实是由很多图片形成。如果在一个24帧的电影中,忽然有一秒钟,在这一秒钟呈现了掉帧。也就是本来0...23的图片变成了 0...10...12...23.两头的某一帧没有渲染进去,那么这个在咱们视觉上就会呈现不晦涩的景象。也就是卡顿的景象。下面就是电影上呈现卡顿的景象。那么在咱们android零碎上呢?

Android渲染机制

在高刷手机没有呈现之前,咱们手机屏幕的帧率是60。就是意味着1秒钟会有60个画面呈现。那么也就是16ms就要有一个画面渲染。**Android零碎每隔16ms收回VSYNC信号,触发对UI进行渲染, 如果每次渲染都胜利,这样就可能达到晦涩的画面所须要的60帧,为了可能实现60fps,这意味着程序的大多数操作都必须在16ms内实现。如果超过了16ms那么可能就呈现丢帧的状况。**如果掉帧的频率很高,也就是导致卡顿的状况。

BlockCanary源码解析

那么在android中,BlockCanary是怎么帮忙咱们去做卡顿检测的呢。明天咱们就来解说一下BlockCanary检测卡顿的原理。

个别咱们都通过以下的代码形式去开启咱们的卡顿检测。

public class DemoApplication extends Application {    @Override    public void onCreate() {        // ...        // Do it on main process        BlockCanary.install(this, new AppBlockCanaryContext()).start();    }}

这段代码次要有两局部,一部分是install,一部分是start。咱们先看install局部

install阶段
BlockCanary#install()
public static BlockCanary install(Context context, BlockCanaryContext blockCanaryContext) {    //BlockCanaryContext.init会将保留利用的applicationContext和用户设置的配置参数        BlockCanaryContext.init(context, blockCanaryContext);    //etEnabled将依据用户的告诉栏音讯配置开启        setEnabled(context, DisplayActivity.class, BlockCanaryContext.get().displayNotification());        return get();    }
BlockCanary#get()
//应用单例创立了一个BlockCanary对象    public static BlockCanary get() {    if (sInstance == null) {        synchronized (BlockCanary.class) {            if (sInstance == null) {                sInstance = new BlockCanary();            }        }    }    return sInstance;}
BlockCanary()
  private BlockCanary() {      //初始化blockCanaryInternals调度类      BlockCanaryInternals.setContext(BlockCanaryContext.get());      mBlockCanaryCore = BlockCanaryInternals.getInstance();      //为BlockCanaryInternals增加拦截器(责任链)BlockCanaryContext对BlockInterceptor是空实现      mBlockCanaryCore.addBlockInterceptor(BlockCanaryContext.get());      if (!BlockCanaryContext.get().displayNotification()) {          return;      }      //DisplayService只在开启告诉栏音讯的时候增加,当卡顿产生时将通过DisplayService发动告诉栏音讯      mBlockCanaryCore.addBlockInterceptor(new DisplayService());  }
BlockCanaryInternals.getInstance()
static BlockCanaryInternals getInstance() {    if (sInstance == null) {        synchronized (BlockCanaryInternals.class) {            if (sInstance == null) {                sInstance = new BlockCanaryInternals();            }        }    }    return sInstance;}
BlockCanaryInternals
public BlockCanaryInternals() {        //初始化栈采集器        stackSampler = new StackSampler(                Looper.getMainLooper().getThread(),                sContext.provideDumpInterval());        //初始化cpu采集器        cpuSampler = new CpuSampler(sContext.provideDumpInterval());        //初始化LooperMonitor,并实现了onBlockEvent的回调,该回调会在触发阈值后被调用,这外面比拟重要        setMonitor(new LooperMonitor(new LooperMonitor.BlockListener() {            @Override            public void onBlockEvent(long realTimeStart, long realTimeEnd,                                     long threadTimeStart, long threadTimeEnd) {                ArrayList<String> threadStackEntries = stackSampler                        .getThreadStackEntries(realTimeStart, realTimeEnd);                if (!threadStackEntries.isEmpty()) {                    BlockInfo blockInfo = BlockInfo.newInstance()                            .setMainThreadTimeCost(realTimeStart, realTimeEnd, threadTimeStart, threadTimeEnd)                            .setCpuBusyFlag(cpuSampler.isCpuBusy(realTimeStart, realTimeEnd))                            .setRecentCpuRate(cpuSampler.getCpuRateInfo())                            .setThreadStackEntries(threadStackEntries)                            .flushString();                    LogWriter.save(blockInfo.toString());                    if (mInterceptorChain.size() != 0) {                        for (BlockInterceptor interceptor : mInterceptorChain) {                            interceptor.onBlock(getContext().provideContext(), blockInfo);                        }                    }                }            }        }, getContext().provideBlockThreshold(), getContext().stopWhenDebugging()));        LogWriter.cleanObsolete();    }

当install进行初始化实现后,接着会调用start()办法,实现如下:

start阶段
BlockCanary#start()
//BlockCanary#start()public void start() {    if (!mMonitorStarted) {        mMonitorStarted = true;        //把mBlockCanaryCore中的monitor设置MainLooper中进行监听        Looper.getMainLooper().setMessageLogging(mBlockCanaryCore.monitor);    }}

这外面的实现也比较简单,就是获取到主线程Looper而后将上一步创立的LooperMonitor设置到主线程Looper外面的MessageLogging。

到这里而后呢?卧槽,没了一开始看这里的源码的时候我也是很懵逼的。而后我就去github上看了,而后呢,我看到了这么一张图。

通过这张图,我能够晓得,真正开始检测的不是start(),而是Looper外面loop()函数

Looper#loop
public static void loop() {    final Looper me = myLooper();    if (me == null) {        throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");    }    if (me.mInLoop) {        Slog.w(TAG, "Loop again would have the queued messages be executed"               + " before this one completed.");    }    me.mInLoop = true;    final MessageQueue queue = me.mQueue;    // Make sure the identity of this thread is that of the local process,    // and keep track of what that identity token actually is.    Binder.clearCallingIdentity();    final long ident = Binder.clearCallingIdentity();    // Allow overriding a threshold with a system prop. e.g.    // adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'    final int thresholdOverride =        SystemProperties.getInt("log.looper."                                + Process.myUid() + "."                                + Thread.currentThread().getName()                                + ".slow", 0);    boolean slowDeliveryDetected = false;    for (;;) {        Message msg = queue.next(); // might block        if (msg == null) {            // No message indicates that the message queue is quitting.            return;        }        // This must be in a local variable, in case a UI event sets the logger        final Printer logging = me.mLogging;        if (logging != null) {            logging.println(">>>>> Dispatching to " + msg.target + " " +                            msg.callback + ": " + msg.what);        }        // Make sure the observer won't change while processing a transaction.        final Observer observer = sObserver;        final long traceTag = me.mTraceTag;        long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;        long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;        if (thresholdOverride > 0) {            slowDispatchThresholdMs = thresholdOverride;            slowDeliveryThresholdMs = thresholdOverride;        }        final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);        final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);        final boolean needStartTime = logSlowDelivery || logSlowDispatch;        final boolean needEndTime = logSlowDispatch;        if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {            Trace.traceBegin(traceTag, msg.target.getTraceName(msg));        }        final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;        final long dispatchEnd;        Object token = null;        if (observer != null) {            token = observer.messageDispatchStarting();        }        long origWorkSource = ThreadLocalWorkSource.setUid(msg.workSourceUid);        try {            msg.target.dispatchMessage(msg);            if (observer != null) {                observer.messageDispatched(token, msg);            }            dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;        } catch (Exception exception) {            if (observer != null) {                observer.dispatchingThrewException(token, msg, exception);            }            throw exception;        } finally {            ThreadLocalWorkSource.restore(origWorkSource);            if (traceTag != 0) {                Trace.traceEnd(traceTag);            }        }        if (logSlowDelivery) {            if (slowDeliveryDetected) {                if ((dispatchStart - msg.when) <= 10) {                    Slog.w(TAG, "Drained");                    slowDeliveryDetected = false;                }            } else {                if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",                                msg)) {                    // Once we write a slow delivery log, suppress until the queue drains.                    slowDeliveryDetected = true;                }            }        }        if (logSlowDispatch) {            showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);        }        if (logging != null) {            logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);        }        // Make sure that during the course of dispatching the        // identity of the thread wasn't corrupted.        final long newIdent = Binder.clearCallingIdentity();        if (ident != newIdent) {            Log.wtf(TAG, "Thread identity changed from 0x"                    + Long.toHexString(ident) + " to 0x"                    + Long.toHexString(newIdent) + " while dispatching to "                    + msg.target.getClass().getName() + " "                    + msg.callback + " what=" + msg.what);        }        msg.recycleUnchecked();    }}

loop()外面的代码很长,咱们解说blockCanary的时候不须要过分关注其余局部,还记得咱们start做的事件吗,咱们去设置了setMessageLogging。所以先看看setMessageLogging办法

Looper#setMessageLogging
public void setMessageLogging(@Nullable Printer printer) {    mLogging = printer;}

其实就是将创立的LooperMonitor赋值给mLogging,那么咱们只须要关注mLogging在loop()中的代码就好了。咱们发现就是调用了两次println。一个是在msg.target.dispatchMessage(msg)之前,一个是在msg.target.dispatchMessage(msg)之后。也就是说这两次调用,一次是解决信号之前,一个是解决信号之后。那么通过实现LooperMonitor外面的println办法,咱们就能够得出一些时间差。所以,接下来咱们要看的是LooperMonitor外面的println办法

MainLooper#println()
//MainLooper#println()@Overridepublic void println(String x) {    //如果再debug模式,不执行监听    if (mStopWhenDebugging && Debug.isDebuggerConnected()) {        return;    }    if (!mPrintingStarted) {  //dispatchMesage前执行的println        //记录开始工夫        mStartTimestamp = System.currentTimeMillis();        mStartThreadTimestamp = SystemClock.currentThreadTimeMillis();        mPrintingStarted = true;        //开始采集栈及cpu信息        startDump();    } else {  //dispatchMesage后执行的println        //获取完结工夫        final long endTime = System.currentTimeMillis();        mPrintingStarted = false;        //判断耗时是否超过阈值        if (isBlock(endTime)) {            notifyBlockEvent(endTime);        }        stopDump();    }}//判断是否超过阈值 private boolean isBlock(long endTime) {     return endTime - mStartTimestamp > mBlockThresholdMillis;//这个阈值是咱们本人设置的 }//如果超过阈值,回调卡顿的监听,阐明卡顿了private void notifyBlockEvent(final long endTime) {    final long startTime = mStartTimestamp;    final long startThreadTime = mStartThreadTimestamp;    final long endThreadTime = SystemClock.currentThreadTimeMillis();    HandlerThreadFactory.getWriteLogThreadHandler().post(new Runnable() {        @Override        public void run() {            mBlockListener.onBlockEvent(startTime, endTime, startThreadTime, endThreadTime);        }    });}

其实这里卡顿检测的源码也还是比较简单的,它的原理就是通过从新实现looper外面的logging,而后通过println函数去判断有没有呈现卡顿。BlockCanary的流程图在下面也呈现了。所以这篇博客也就写道这里吧。心愿对大家,对于卡顿的了解有肯定的帮忙。