整个数据获取的信息是通过房源平台获取的,通过下载网页元素并进行数据提取剖析实现整个过程。

【浏览全文】

导入相干的网页下载、数据解析、数据处理库

from fake_useragent import UserAgent  # 身份信息生成库from bs4 import BeautifulSoup  # 网页元素解析库import numpy as np  # 科学计算库import requests  # 网页下载库from requests.exceptions import RequestException  # 网络申请异样库import pandas as pd  # 数据处理库

而后,在开始之前初始化一个身份信息生成的对象,用于前面随机生成网页下载时的身份信息。

user_agent = UserAgent()

编写一个网页下载函数get_html_txt,从相应的url地址下载网页的html文本。

def get_html_txt(url, page_index):    '''    获取网页html文本信息    :param url: 爬取地址    :param page_index:当前页数    :return:    '''    try:        headers = {            'user-agent': user_agent.random        }        response = requests.request("GET", url, headers=headers, timeout=10)        html_txt = response.text        return html_txt    except RequestException as e:        print('获取第{0}页网页元素失败!'.format(page_index))        return ''

编写网页元素处理函数catch_html_data,用于解析网页元素,并将解析后的数据元素保留到csv文件中。

def catch_html_data(url, page_index):    '''    解决网页元素数据    :param url: 爬虫地址    :param page_index:    :return:    '''    # 下载网页元素    html_txt = str(get_html_txt(url, page_index))    if html_txt.strip() != '':        # 初始化网页元素对象        beautifulSoup = BeautifulSoup(html_txt, 'lxml')        # 解析房源列表        h_list = beautifulSoup.select('.resblock-list-wrapper li')        # 遍历以后房源的详细信息        for n in range(len(h_list)):            h_detail = h_list[n]            # 提取房源名称            h_detail_name = h_detail.select('.resblock-name a.name')            h_detail_name = [m.get_text() for m in h_detail_name]            h_detail_name = ' '.join(map(str, h_detail_name))            # 提取房源类型            h_detail_type = h_detail.select('.resblock-name span.resblock-type')            h_detail_type = [m.get_text() for m in h_detail_type]            h_detail_type = ' '.join(map(str, h_detail_type))            # 提取房源销售状态            h_detail_status = h_detail.select('.resblock-name span.sale-status')            h_detail_status = [m.get_text() for m in h_detail_status]            h_detail_status = ' '.join(map(str, h_detail_status))            # 提取房源单价信息            h_detail_price = h_detail.select('.resblock-price .main-price .number')            h_detail_price = [m.get_text() for m in h_detail_price]            h_detail_price = ' '.join(map(str, h_detail_price))            # 提取房源总价信息            h_detail_total_price = h_detail.select('.resblock-price .second')            h_detail_total_price = [m.get_text() for m in h_detail_total_price]            h_detail_total_price = ' '.join(map(str, h_detail_total_price))            h_info = [h_detail_name, h_detail_type, h_detail_status, h_detail_price, h_detail_total_price]            h_info = np.array(h_info)            h_info = h_info.reshape(-1, 5)            h_info = pd.DataFrame(h_info, columns=['房源名称', '房源类型', '房源状态', '房源均价', '房源总价'])            h_info.to_csv('北京房源信息.csv', mode='a+', index=False, header=False)        print('第{0}页房源信息数据存储胜利!'.format(page_index))    else:        print('网页元素解析失败!')

编写多线程处理函数,初始化网络网页下载地址,并应用多线程启动调用业务处理函数catch_html_data,启动线程实现整个业务流程。

import threading  # 导入线程解决模块def thread_catch():    '''    线程处理函数    :return:    '''    for num in range(1, 50, 3):        url_pre = "https://bj.fang.lianjia.com/loupan/pg{0}/".format(str(num))        url_cur = "https://bj.fang.lianjia.com/loupan/pg{0}/".format(str(num + 1))        url_aft = "https://bj.fang.lianjia.com/loupan/pg{0}/".format(str(num + 2))        thread_pre = threading.Thread(target=catch_html_data, args=(url_pre, num))        thread_cur = threading.Thread(target=catch_html_data, args=(url_cur, num + 1))        thread_aft = threading.Thread(target=catch_html_data, args=(url_aft, num + 2))        thread_pre.start()        thread_cur.start()        thread_aft.start()thread_catch()

数据存储后果展现成果

【往期精彩】

办公自动化:Image图片转换成PDF文档存储...

python做一个微型美颜图片处理器,十行代码即可实现...

用python做一个文本翻译器,主动将中文翻译成英文,超不便的!

小王,给这2000个客户发一下节日祝愿的邮件...

python 一行命令开启网络间的文件共享...

PyQt5 批量删除 Excel 反复数据,多个文件、自定义反复项一键删除...

再见XShell,这款国人开源的终端命令行工具更nice!

python 表情包下载器,轻松下载上万个表情包、斗图不必愁...

Python 主动清理电脑垃圾文件,一键启动即可...

有了jmespath,解决python中的json数据就变成了一种享受...

解锁一个新技能,如何在Python代码中应用表情包...

万能的list列表,python中的堆栈、队列实现全靠它!