多线程多过程多协程(转载)
- Bilibili 蚂蚁学Python UP主说得很好
- 工作中看视频不不便,截取重点局部改为文字版,不便抄作业
- 原地址:https://www.bilibili.com/video/BV1bK411A7tV
多线程
定义一个函数
def my_func(a,b): do_something(a,b)
创立线程
import threadingt = threading.Thread(target=my_func, args=(a, b))
启动线程
t.start()
期待完结
t.join()
队列
queue.Queue是线程平安的
import queueq = queue.Queue()# 增加与获取q.put(time)item = q.get()# 查看状态q.qsize()q.empty()q.full()
线程平安(锁)
try-finally
import threadinglock = threading.Lock()lock.acquire()try: # do somethingfinally: lock.release()
with
import threadinglock = threading.Lock()with lock: # do something
线程池
map函数,后果预入参程序对应
from concurrent.futures import ThreadPoolExecutorarg_list = []with ThreadPoolExecutor() as pool: results = pool.map(my_func, arg_list) for result in results: print(results)
submit函数,as_completed程序可按实现程序
from concurrent.futures import ThreadPoolExecutor, as_completedarg_list = []with ThreadPoolExecutor() as pool: futures = [pool.submit(my_func, arg) for arg in arg_list] # 按输出程序 for future in futures: print(future.result()) # 按实现程序 for future in as_completed(futures): print(future.result())
Flask中应用线程池
import timefrom concurrent.futures import ThreadPoolExecutorfrom flask import Flaskapp = Flask(__name__)pool = ThreadPoolExecutor()def do_1(): time.sleep(1) return 'do_1'def do_2(): time.sleep(1) return 'do_2'def do_3(): time.sleep(1) return 'do_3'@app.route("/")def index(): result_1 = pool.submit(do_1) result_2 = pool.submit(do_2) result_3 = pool.submit(do_3) return { '1': result_1.result(), '2': result_2.result(), '3': result_3.result(), }if __name__ == "__main__": app.run()
多过程
图片截图自 蚂蚁学Python Bilibili 03:00
Flask应用多过程
import timefrom concurrent.futures import ProcessPoolExecutorfrom flask import Flaskapp = Flask(__name__)def do_1(): time.sleep(1) return 'do_1'def do_2(): time.sleep(1) return 'do_2'def do_3(): time.sleep(1) return 'do_3'@app.route("/")def index(): result_1 = pool.submit(do_1) result_2 = pool.submit(do_2) result_3 = pool.submit(do_3) return { '1': result_1.result(), '2': result_2.result(), '3': result_3.result(), }if __name__ == "__main__": pool = ProcessPoolExecutor() app.run()
协程:asyncio、await
import asyncioimport aiohttploop = asyncio.get_event_loop()async def get_url(url): async with aiohttp.ClientSession() as session: async with session.get(url) as resp: result = await resp.text() print(f"url:{url},{len(result)}")urls = [f"https://www.cnblogs.com/#p{page}" for page in range(1, 50 + 1)]tasks = [loop.create_task(get_url(url)) for url in urls]loop.run_until_complete(asyncio.wait(tasks))
管制asyncio并发数
try-finally
import asynciosem = asyncio.Semaphore(10)await sem.acquire()try: # do somethingfinally: sem.release()
with
import asynciosem = asyncio.Semaphore(10)async with sem: # do something
举例
import asyncioimport aiohttploop = asyncio.get_event_loop()# 限度10个并发semaphore = asyncio.Semaphore(10)async def get_url(url): async with semaphore: async with aiohttp.ClientSession() as session: async with session.get(url) as resp: result = await resp.text() print(f"url:{url},{len(result)}")urls = [f"https://www.cnblogs.com/#p{page}" for page in range(1, 50 + 1)]tasks = [loop.create_task(get_url(url)) for url in urls]loop.run_until_complete(asyncio.wait(tasks))