简介:在理论业务应用中,须要常常实时做一些数据分析,包含实时PV和UV展现,实时销售数据,实时店铺UV以及实时举荐零碎等,基于此类需要,Confluent+实时计算Flink版是一个高效的计划。
业务背景
在理论业务应用中,须要常常实时做一些数据分析,包含实时PV和UV展现,实时销售数据,实时店铺UV以及实时举荐零碎等,基于此类需要,Confluent+实时计算Flink版是一个高效的计划。
Confluent是基于Apache Kafka提供的企业级全托管流数据服务,由 Apache Kafka 的原始创建者构建,通过企业级性能扩大了 Kafka 的劣势,同时打消了 Kafka治理或监控的累赘。
实时计算Flink版是阿里云基于 Apache Flink 构建的企业级实时大数据计算商业产品。实时计算 Flink 由 Apache Flink 开创团队官网出品,领有寰球对立商业化品牌,提供全系列产品矩阵,齐全兼容开源 Flink API,并充沛基于弱小的阿里云平台提供云原生的 Flink 商业增值能力。
一、筹备工作-创立Confluent集群和实时计算Flink版集群
登录Confluent治理控制台,创立Confluent集群,创立步骤参考 Confluent集群开明
登录实时计算Flink版治理控制台,创立vvp集群。请留神,创立vvp集群抉择的vpc跟confluent集群的region和vpc应用同一个,这样能够在vvp外部拜访confluent的外部域名。
二、最佳实际-实时统计玩家充值金额-Confluent+实时计算Flink+Hologres
2.1 新建Confluent音讯队列
在confluent集群列表页,登录control center
在左侧选中Topics,点击Add a topic按钮,创立一个名为confluent-vvp-test的topic,将partition设置为3
2.2 配置后果表 Hologres
进入Hologres控制台,点击Hologres实例,在DB治理中新增数据库mydb
登录Hologres数据库,新建SQL
Hologres中创立后果表 SQL语句
--用户累计生产后果表 CREATE TABLE consume ( appkey VARCHAR, serverid VARCHAR, servertime VARCHAR, roleid VARCHAR, amount FLOAT, dt VARCHAR, primary key(appkey,dt) );
2.3 创立实时计算vvp作业
首先登录vvp控制台,抉择集群所在region,点击控制台,进入开发界面
点击作业开发Tab,点击新建文件,文件名称:confluent-vvp-hologres,文件类型抉择:流作业/SQL
在输入框写入以下代码:
create TEMPORARY table kafka_game_consume_source( appkey STRING, servertime STRING, consumenum DOUBLE, roleid STRING, serverid STRING ) with ( 'connector' = 'kafka', 'topic' = 'game_consume_log', 'properties.bootstrap.servers' = 'kafka.confluent.svc.cluster.local.xxx:9071[xxx能够找开发同学查看]', 'properties.group.id' = 'gamegroup', 'format' = 'json', 'properties.ssl.truststore.location' = '/flink/usrlib/truststore.jks', 'properties.ssl.truststore.password' = '[your truststore password]', 'properties.security.protocol'='SASL_SSL', 'properties.sasl.mechanism'='PLAIN', 'properties.sasl.jaas.config'='org.apache.flink.kafka.shaded.org.apache.kafka.common.security.plain.PlainLoginModule required username="xxx[集群的用户]" password="xxx[相应的明码]";');-- 创立累计生产hologres sink表CREATE TEMPORARY TABLE consume( appkey STRING, serverid STRING, servertime STRING, roleid STRING, amount DOUBLE, dt STRING, PRIMARY KEY (appkey,dt) NOT ENFORCED )WITH ( 'connector' = 'hologres', 'dbname' = 'mydb', 'endpoint' = 'hgprecn-cn-tl32gkaet006-cn-beijing-vpc.hologres.aliyuncs.com:80', 'password' = '[your appkey secret]', 'tablename' = 'consume', 'username' = '[your app key]', 'mutateType' = 'insertorreplace' );--{"appkey":"appkey1","servertime":"2020-09-30 14:10:36","consumenum":33.8,"roleid":"roleid1","serverid":"1"}--{"appkey":"appkey2","servertime":"2020-09-30 14:11:36","consumenum":30.8,"roleid":"roleid2","serverid":"2"}--{"appkey":"appkey1","servertime":"2020-09-30 14:13:36","consumenum":31.8,"roleid":"roleid1","serverid":"1"}--{"appkey":"appkey2","servertime":"2020-09-30 14:20:36","consumenum":33.8,"roleid":"roleid2","serverid":"2"}--{"appkey":"appkey1","servertime":"2020-09-30 14:30:36","consumenum":73.8,"roleid":"roleid1","serverid":"1"} -- 计算每个用户累积生产金额 insert into consume SELECT appkey,LAST_VALUE(serverid) as serverid,LAST_VALUE(servertime) as servertime,LAST_VALUE(roleid) as roleid, sum(consumenum) as amount, substring(servertime,1,10) as dt FROM kafka_game_consume_source GROUP BY appkey,substring(servertime,1,10) having sum(consumenum) > 0;
在高级配置里,减少依赖文件truststore.jks(拜访外部域名得增加这个文件,拜访公网域名能够不必),拜访依赖文件的固定门路前缀都是/flink/usrlib/(这里就是/flink/usrlib/truststore.jks)
点击上线按钮,实现上线
在运维作用列表里找到刚上线的作用,点击启动按钮,期待状态更新为running,运行胜利。
在control center的【Topics->Messages】页面,逐条发送测试音讯,格局为:
{"appkey":"appkey1","servertime":"2020-09-30 14:10:36","consumenum":33.8,"roleid":"roleid1","serverid":"1"}{"appkey":"appkey2","servertime":"2020-09-30 14:11:36","consumenum":30.8,"roleid":"roleid2","serverid":"2"}{"appkey":"appkey1","servertime":"2020-09-30 14:13:36","consumenum":31.8,"roleid":"roleid1","serverid":"1"}{"appkey":"appkey2","servertime":"2020-09-30 14:20:36","consumenum":33.8,"roleid":"roleid2","serverid":"2"}{"appkey":"appkey1","servertime":"2020-09-30 14:30:36","consumenum":73.8,"roleid":"roleid1","serverid":"1"}
2.4 查看用户充值金额实时统计成果
三、最佳实际-电商实时PV和UV统计-Confluent+实时计算Flink+RDS
3.1 新建Confluent音讯队列
在confluent集群列表页,登录control center
在左侧选中Topics,点击Add a topic按钮,创立一个名为pv-uv的topic,将partition设置为3
3.2 创立云数据库RDS后果表
登录 RDS 治理控制台页面,购买RDS。确保RDS与Flink全托管集群在雷同region,雷同VPC下
增加虚构交换机网段(vswitch IP段)进入RDS白名单,详情参考:设置白名单文档
【vswitch IP段】可在 flink的工作空间详情中查问
在【账号治理】页面创立账号【高权限账号】
数据库实例下【数据库治理】新建数据库【conflufent_vvp】
应用零碎自带的DMS服务登陆RDS,登录名和明码输出下面创立的高权限账户
双击【confluent_vvp】数据库,关上SQLConsole,将以下建表语句复制粘贴到 SQLConsole中,创立后果表
CREATE TABLE result_cps_total_summary_pvuv_min( summary_date date NOT NULL COMMENT '统计日期', summary_min varchar(255) COMMENT '统计分钟', pv bigint COMMENT 'pv', uv bigint COMMENT 'uv', currenttime timestamp COMMENT '以后工夫', primary key(summary_date,summary_min))
3.3 创立实时计算VVP作业
1.【[VVP控制台】新建文件
在SQL区域输出以下代码:
--数据的订单源表CREATE TABLE source_ods_fact_log_track_action ( account_id VARCHAR, --用户ID client_ip VARCHAR, --客户端IP client_info VARCHAR, --设施机型信息 platform VARCHAR, --零碎版本信息 imei VARCHAR, --设施惟一标识 `version` VARCHAR, --版本号 `action` VARCHAR, --页面跳转形容 gpm VARCHAR, --埋点链路 c_time VARCHAR, --申请工夫 target_type VARCHAR, --指标类型 target_id VARCHAR, --指标ID udata VARCHAR, --扩大信息,JSON格局 session_id VARCHAR, --会话ID product_id_chain VARCHAR, --商品ID串 cart_product_id_chain VARCHAR, --加购商品ID tag VARCHAR, --非凡标记 `position` VARCHAR, --地位信息 network VARCHAR, --网络应用状况 p_dt VARCHAR, --工夫分区天 p_platform VARCHAR --零碎版本信息) WITH ( 'connector' = 'kafka', 'topic' = 'game_consume_log', 'properties.bootstrap.servers' = 'kafka.confluent.svc.cluster.local.c79f69095bc5d4d98b01136fe43e31b93:9071', 'properties.group.id' = 'gamegroup', 'format' = 'json', 'properties.ssl.truststore.location' = '/flink/usrlib/truststore.jks', 'properties.ssl.truststore.password' = '【your password】', 'properties.security.protocol'='SASL_SSL', 'properties.sasl.mechanism'='PLAIN', 'properties.sasl.jaas.config'='org.apache.flink.kafka.shaded.org.apache.kafka.common.security.plain.PlainLoginModule required username="【your user name】" password="【your password】";');--{"account_id":"id1","client_ip":"172.11.1.1","client_info":"mi10","p_dt":"2021-12-01","c_time":"2021-12-01 19:10:00"}CREATE TABLE result_cps_total_summary_pvuv_min ( summary_date date, --统计日期 summary_min varchar, --统计分钟 pv bigint, --点击量 uv bigint, --一天内同个访客屡次拜访仅计算一个UV currenttime timestamp, --以后工夫 primary key (summary_date, summary_min)) WITH ( type = 'rds', url = 'url = 'jdbc:mysql://rm-【your rds clusterId】.mysql.rds.aliyuncs.com:3306/confluent_vvp',', tableName = 'result_cps_total_summary_pvuv_min', userName = 'flink_confluent_vip', password = '【your rds password】');CREATE VIEW result_cps_total_summary_pvuv_min_01 ASselect cast (p_dt as date) as summary_date --工夫分区 , count (client_ip) as pv --客户端的IP , count (distinct client_ip) as uv --客户端去重 , cast (max (c_time) as TIMESTAMP) as c_time --申请的工夫from source_ods_fact_log_track_actiongroup by p_dt;INSERT into result_cps_total_summary_pvuv_minselect a.summary_date, --工夫分区 cast (DATE_FORMAT (c_time, 'HH:mm') as varchar) as summary_min, --取出小时分钟级别的工夫 a.pv, a.uv, CURRENT_TIMESTAMP as currenttime --以后工夫from result_cps_total_summary_pvuv_min_01 AS a;
点击【上线】之后,在作业运维页面点击启动按钮,直到状态更新为RUNNING状态。
在control center的【Topics->Messages】页面,逐条发送测试音讯,格局为:
{"account_id":"id1","client_ip":"72.11.1.111","client_info":"mi10","p_dt":"2021-12-01","c_time":"2021-12-01 19:11:00"}{"account_id":"id2","client_ip":"72.11.1.112","client_info":"mi10","p_dt":"2021-12-01","c_time":"2021-12-01 19:12:00"}{"account_id":"id3","client_ip":"72.11.1.113","client_info":"mi10","p_dt":"2021-12-01","c_time":"2021-12-01 19:13:00"}
3.4 查看PV和UV成果
能够看出rds数据表的pv和uv会随着发送的音讯数据,动静的变动,同时还能够通过【数据可视化】来查看相应的图表信息。
pv图表展现:
uv图表展现:
原文链接
本文为阿里云原创内容,未经容许不得转载。