一、前言

为了便于学习容器编排,实际容器编排,本篇文章记录在本地虚拟机搭建一个准生产级别的Kubernetes集群。在此k8s集群的根底上,咱们能够尝试着容器化工作或者学习场景中的各种中间件集群,以及微服务利用。

二、集群搭建资源筹备

从学习的目标登程,筹备搭建一个管制节点和两个工作节点的集群,为了节约老本,须要反对pod被调度到管制节点上。

2.1、机器筹备

虚拟机节点角色系统配置装置组件
k8s-master01主节点centos7,2核6Gkube-apiserver、kube-scheduler、kube-controller-manager、etcd、kube-proxy、kubeadm、kubelet、kubectl、docker
k8s-workder01工作节点centos7,2核6Gkubeadm、kubelet、kubectl、kube-proxy、docker
k8s-workder02工作节点centos7,2核6Gkubeadm、kubelet、kubectl、kube-proxy、docker

2.2、组件介绍

组件名称组件类型部署形式组件形容
kube-apiserver管制立体组件通过kubeadm容器化部署API 服务器是 Kubernetes 管制面的组件, 该组件公开了 Kubernetes API。 API 服务器是 Kubernetes 管制面的前端
kube-scheduler管制立体组件通过kubeadm容器化部署负责监督新创建的、未指定运行节点(node)的 Pods,抉择节点让 Pod 在下面运行
kube-controller-manager管制立体组件通过kubeadm容器化部署从逻辑上讲,每个控制器都是一个独自的过程, 然而为了升高复杂性,它们都被编译到同一个可执行文件,并在一个过程中运行
etcd管制立体组件通过kubeadm容器化部署etcd是兼具一致性和高可用性的键值数据库,作为保留 Kubernetes所有集群数据(资源对象等)的后盾数据库
kubelet节点组件yum装置,无奈容器化部署kubelet 接管一组通过各类机制提供给它的 PodSpecs,确保这些 PodSpecs 中形容的容器处于运行状态且衰弱。 kubelet 不会治理不是由 Kubernetes 创立的容器
kube-proxy节点组件通过kubeadm容器化部署kube-proxy 是集群中每个节点上运行的网络代理, 实现 Kubernetes 服务(Service) 概念的一部分。kube-proxy 保护节点上的网络规定。这些网络规定容许从集群外部或内部的网络会话与 Pod 进行网络通信。
docker节点组件yum装置docker引擎,k8s反对的一种容器运行时实现
kubeadm集群辅助部署工具yum装置k8s官网集群部署工具
kubectl客户端工具yum装置用来与集群通信的命令行工具

2.3、筹备工作确认

无论是本地物理机还是私有云上的虚拟机,都应该保障以下几点要求

  • 满足装置 Docker 我的项目所需的要求,比方 64 位的 Linux 操作系统、3.10 及以上的内核版本
  • x86 或者 ARM 架构均可
  • 机器之间网络互通,容器网络互通的前提
  • 有外网拜访权限,因为须要拉取镜像(也可手动下载好镜像)
  • 节点之中不能够有反复的主机名、MAC 地址或 product_uuid
  • 开启机器上的某些端口,详情参照k8s官网,k8s组件端口协定
  • 禁用替换分区。为了保障 kubelet 失常工作

2.4、实际部署指标

  1. 在所有节点上装置 Docker 和 kubeadm
  2. 部署 Kubernetes Master
  3. 部署容器网络插件
  4. 部署 Kubernetes Worker
  5. 部署 Dashboard 可视化插件
  6. 部署容器存储插件

三、集群搭建

3.1、装置docker引擎

k8s通过下层CRI接口对接容器运行时实现,这里咱们采纳docker引擎这个容器运行时实现。因为咱们采纳的是centos7的机器部署k8s集群,此处采纳yum源装置docker引擎

  • Centos7 yum源装置docker引擎
  • 参考docker官网的装置手册
留神:配置 Docker 守护程序,尤其是应用 systemd 来治理容器的 cgroup,放弃docker与kubelet的cgroup驱动统一
[root@vm-k8s-master ~]# cat /etc/docker/daemon.json {  #配置docker的镜像仓库,减速镜像的拉取  "registry-mirrors": ["https://hub-mirror.c.163.com","https://reg-mirror.qiniu.com"],  #配置cgroup驱动为systemd  "exec-opts": ["native.cgroupdriver=systemd"],  "log-driver": "json-file",  "log-opts": {    "max-size": "100m"  },  #对于运行 Linux 内核版本 4.0 或更高版本,或应用 3.10.0-51 及更高版本的 RHEL 或 CentOS 的零碎,overlay2是首选的存储驱动程序。  "storage-driver": "overlay2"}

3.2、装置kubeadm

3.2.1、配置主机名

k8s集群节点之中不能够有反复的主机名、MAC 地址或 product_uuid

#配置主机名hostnamectl set-hostname master#查看主机名,查看是否k8s集群节点的主机名是否有反复cat /etc/hostname    #product_uuid校验sudo cat /sys/class/dmi/id/product_uuid#应用命令ip link 或 ifconfig -a来获取网络接口的MAC地址ifconfig -a

3.2.2、批改节点host

cat >> /etc/hosts << EOF192.168.31.254  k8s.master.com192.168.31.254  k8s.cluster-endpoint192.168.31.58   k8s.worker01.com192.168.31.20   k8s.worker02.comEOF

阐明:以上是k8s三个节点的IP域名映射。

3.2.3、容许iptables查看桥接流量

  • 确保br_netfilter模块被加载
#查看是否加载了br_netfilter模块lsmod | grep br_netfiltercat <<EOF | sudo tee /etc/modules-load.d/k8s.confbr_netfilterEOF#若没有加载br_netfilter模块,则显式加载br_netfilter模块sudo modprobe br_netfilter
  • 确保iptables可能正确地查看桥接流量

为了让你的 Linux 节点上的 iptables 可能正确地查看桥接流量,你须要确保在你的 sysctl 配置中将 net.bridge.bridge-nf-call-iptables 设置为 1

cat <<EOF | sudo tee /etc/sysctl.d/k8s.confnet.bridge.bridge-nf-call-ip6tables = 1net.bridge.bridge-nf-call-iptables = 1EOFsudo sysctl --system

3.2.4、禁用swap替换分区

#禁用所有替换替换设施swapoff -a# 正文swap行vim /etc/fstab#重启机器reboot

3.2.5、配置kubernetes的yum源

  • 配置官网的kubernetes yum源(网络容许的状况下)

    cat <<EOF | sudo tee /etc/yum.repos.d/kubernetes.repo[kubernetes]name=Kubernetesbaseurl=https://packages.cloud.google.com/yum/repos/kubernetes-el7-\$basearchenabled=1gpgcheck=1repo_gpgcheck=1gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.gpg https://packages.cloud.google.com/yum/doc/rpm-package-key.gpgexclude=kubelet kubeadm kubectlEOF
  • 配置采纳阿里云镜像的kubernetes yum源

    cat <<EOF | sudo tee /etc/yum.repos.d/kubernetes.repo[kubernetes]name=Kubernetesbaseurl=https://mirrors.aliyun.com/kubernetes/yum/repos/kubernetes-el7-\$basearchenabled=1gpgcheck=0repo_gpgcheck=0gpgkey=https://mirrors.aliyun.com/kubernetes/yum/doc/yum-key.gpg https://mirrors.aliyun.com/kubernetes/yum/doc/rpm-package-key.gpgexclude=kubelet kubeadm kubectlEOF

3.2.6、yum源装置kubeadm、kubelet、kubectl

# 将SELinux设置为permissive模式(相当于将其禁用)# 通过运行命令 setenforce 0 和 sed ... 将 SELinux 设置为 permissive 模式 能够无效地将其禁用。 这是容许容器拜访主机文件系统所必须的,而这些操作时为了例如 Pod 网络工作失常sudo setenforce 0sudo sed -i 's/^SELINUX=enforcing$/SELINUX=permissive/' /etc/selinux/config#敞开防火墙,这个不是必须得,然而须要保障k8s的各个组件的端口交互的规定的保护,试验环境简略敞开解决systemctl stop firewalldsystemctl disable firewalld#yum源装置kubeadm、kubelet、kubectlsudo yum install -y kubelet kubeadm kubectl --disableexcludes=kubernetes#查问kubelet版本,以便于找到到一个版本,用于下一步指定版本装置yum list kubelet --showduplicates | sort -r #指定版本装置sudo yum install -y kubelet-<version> kubeadm-<version> kubectl-<version> --disableexcludes=kubernetes#开机自启动kubeletsudo systemctl enable --now kubelet#开机即设置kubectl命令补全echo "source <(kubectl completion bash)" >> ~/.bash_profilesource .bash_profile
  • 在上述装置 kubeadm 的过程中,kubeadm 和 kubelet、kubectl、kubernetes-cni 这几个二进制文件都会被主动装置好
================================================================================================================================================================================================================== Package                                                     架构                                        版本                                               源                                               大小==================================================================================================================================================================================================================正在装置: kubeadm                                                     x86_64                                      1.23.5-0                                           kubernetes                                      9.0 M kubectl                                                     x86_64                                      1.23.5-0                                           kubernetes                                      9.5 M kubelet                                                     x86_64                                      1.23.5-0                                           kubernetes                                       21 M为依赖而装置: conntrack-tools                                             x86_64                                      1.4.4-7.el7                                        base                                            187 k cri-tools                                                   x86_64                                      1.23.0-0                                           kubernetes                                      7.1 M kubernetes-cni                                              x86_64                                      0.8.7-0                                            kubernetes                                       19 M libnetfilter_cthelper                                       x86_64                                      1.0.0-11.el7                                       base                                             18 k libnetfilter_cttimeout                                      x86_64                                      1.0.0-7.el7                                        base                                             18 k libnetfilter_queue                                          x86_64                                      1.0.2-2.el7_2                                      base                                             23 k socat                                                       x86_64                                      1.7.3.2-2.el7                                      base                                            290 k事务概要==================================================================================================================================================================================================================装置  3 软件包 (+7 依赖软件包)总下载量:65 M装置大小:297 MDownloading packages:(1/10): conntrack-tools-1.4.4-7.el7.x86_64.rpm                                                                                                                                             | 187 kB  00:00:00     (2/10): 4d300a7655f56307d35f127d99dc192b6aa4997f322234e754f16aaa60fd8906-cri-tools-1.23.0-0.x86_64.rpm                                                                                     | 7.1 MB  00:00:00     (3/10): ab0e12925be5251baf5dd3b31493663d46e4a7b458c7a5b6b717f4ae87a81bd4-kubeadm-1.23.5-0.x86_64.rpm                                                                                       | 9.0 MB  00:00:00     (4/10): 96b208380314a19ded917eaf125ed748f5e2b28a3cc8707a10a76a9f5b61c0df-kubectl-1.23.5-0.x86_64.rpm                                                                                       | 9.5 MB  00:00:00     (5/10): libnetfilter_cthelper-1.0.0-11.el7.x86_64.rpm                                                                                                                                      |  18 kB  00:00:00     (6/10): socat-1.7.3.2-2.el7.x86_64.rpm                                                                                                                                                     | 290 kB  00:00:00     (7/10): libnetfilter_cttimeout-1.0.0-7.el7.x86_64.rpm                                                                                                                                      |  18 kB  00:00:00     (8/10): d39aa6eb38a6a8326b7e88c622107327dfd02ac8aaae32eceb856643a2ad9981-kubelet-1.23.5-0.x86_64.rpm                                                                                       |  21 MB  00:00:01     (9/10): db7cb5cb0b3f6875f54d10f02e625573988e3e91fd4fc5eef0b1876bb18604ad-kubernetes-cni-0.8.7-0.x86_64.rpm                                                                                 |  19 MB  00:00:01     (10/10): libnetfilter_queue-1.0.2-2.el7_2.x86_64.rpm                                                                                                                                       |  23 kB  00:00:01     ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------总计                                                                                                                                                                               26 MB/s |  65 MB  00:00:02     Running transaction checkRunning transaction testTransaction test succeededRunning transaction  正在装置    : libnetfilter_cthelper-1.0.0-11.el7.x86_64                                                                                                                                                    1/10   正在装置    : socat-1.7.3.2-2.el7.x86_64                                                                                                                                                                   2/10   正在装置    : libnetfilter_cttimeout-1.0.0-7.el7.x86_64                                                                                                                                                    3/10   正在装置    : cri-tools-1.23.0-0.x86_64                                                                                                                                                                    4/10   正在装置    : libnetfilter_queue-1.0.2-2.el7_2.x86_64                                                                                                                                                      5/10   正在装置    : conntrack-tools-1.4.4-7.el7.x86_64                                                                                                                                                           6/10   正在装置    : kubernetes-cni-0.8.7-0.x86_64                                                                                                                                                                7/10   正在装置    : kubelet-1.23.5-0.x86_64                                                                                                                                                                      8/10   正在装置    : kubectl-1.23.5-0.x86_64                                                                                                                                                                      9/10   正在装置    : kubeadm-1.23.5-0.x86_64                                                                                                                                                                     10/10   验证中      : conntrack-tools-1.4.4-7.el7.x86_64                                                                                                                                                           1/10   验证中      : kubernetes-cni-0.8.7-0.x86_64                                                                                                                                                                2/10   验证中      : kubectl-1.23.5-0.x86_64                                                                                                                                                                      3/10   验证中      : kubeadm-1.23.5-0.x86_64                                                                                                                                                                      4/10   验证中      : libnetfilter_queue-1.0.2-2.el7_2.x86_64                                                                                                                                                      5/10   验证中      : cri-tools-1.23.0-0.x86_64                                                                                                                                                                    6/10   验证中      : kubelet-1.23.5-0.x86_64                                                                                                                                                                      7/10   验证中      : libnetfilter_cttimeout-1.0.0-7.el7.x86_64                                                                                                                                                    8/10   验证中      : socat-1.7.3.2-2.el7.x86_64                                                                                                                                                                   9/10   验证中      : libnetfilter_cthelper-1.0.0-11.el7.x86_64                                                                                                                                                   10/10 已装置:  kubeadm.x86_64 0:1.23.5-0                                            kubectl.x86_64 0:1.23.5-0                                            kubelet.x86_64 0:1.23.5-0                                           作为依赖被装置:  conntrack-tools.x86_64 0:1.4.4-7.el7         cri-tools.x86_64 0:1.23.0-0     kubernetes-cni.x86_64 0:0.8.7-0    libnetfilter_cthelper.x86_64 0:1.0.0-11.el7    libnetfilter_cttimeout.x86_64 0:1.0.0-7.el7     libnetfilter_queue.x86_64 0:1.0.2-2.el7_2    socat.x86_64 0:1.7.3.2-2.el7   结束!

阐明:kubelet当初每隔几秒就会重启,因为它陷入了一个期待kubeadm指令的死循环。
留神:如果校验签名报错,敞开校验,设置(gpgcheck=0、repo_gpgcheck=0)即可

https://mirrors.aliyun.com/kubernetes/yum/repos/kubernetes-el7-x86_64/repodata/repomd.xml: [Errno -1] repomd.xml signature could not be verified for kubernetes

3.3、部署Kubernetes的Master节点

3.3.1、查看kubeadm须要下载的镜像

[root@vm-k8s-master ~]# kubeadm config images list --kubernetes-version=1.23.5k8s.gcr.io/kube-apiserver:v1.23.5k8s.gcr.io/kube-controller-manager:v1.23.5k8s.gcr.io/kube-scheduler:v1.23.5k8s.gcr.io/kube-proxy:v1.23.5k8s.gcr.io/pause:3.6k8s.gcr.io/etcd:3.5.1-0k8s.gcr.io/coredns/coredns:v1.8.6

阐明:kubernetes所有皆容器的思维体现,k8s管制立体的外围组件均采纳pod治理容器部署。默认状况下, kubeadm 会从 k8s.gcr.io 仓库拉取镜像。如果申请的 Kubernetes 版本是 CI 标签 (例如 ci/latest),则应用 gcr.io/k8s-staging-ci-images,如果网络不容许,咱们能够手动下载以上所有的容器镜像,也能够指定从自定义的镜像仓库拉取

3.3.2、指定镜像仓库初始化管制立体(master节点)

kubeadm init \--apiserver-advertise-address=192.168.31.254 \--control-plane-endpoint=k8s.cluster-endpoint \--image-repository registry.aliyuncs.com/google_containers \--kubernetes-version v1.23.5 \--service-cidr=10.1.0.0/16 \--pod-network-cidr=10.244.0.0/16
  • apiserver-advertise-address:API 服务器所颁布的其正在监听的 IP 地址。如果未设置,则应用默认网络接口
  • control-plane-endpoint:为管制立体指定一个稳固的IP地址或DNS名称,
  • image-repository:抉择用于拉取管制平面镜像的容器仓库,默认值:"k8s.gcr.io"
  • kubernetes-version:为管制立体抉择一个特定的Kubernetes版本, 默认值:"stable-1"
  • service-cidr:为服务的虚构IP地址另外指定IP地址段,默认值:"10.96.0.0/12"
  • pod-network-cidr:指明pod网络能够应用的IP地址段。如果设置了这个参数,管制立体将会为每一个节点主动调配 CIDRs

3.3.2.1、初始化管制立体日志

[root@vm-k8s-master k8s-init]# kubeadm init \> --apiserver-advertise-address=192.168.31.254 \> --control-plane-endpoint=k8s.cluster-endpoint \> --image-repository registry.aliyuncs.com/google_containers \> --kubernetes-version v1.23.5 \> --service-cidr=10.1.0.0/16 \> --pod-network-cidr=10.244.0.0/16[init] Using Kubernetes version: v1.23.5[preflight] Running pre-flight checks[preflight] Pulling images required for setting up a Kubernetes cluster[preflight] This might take a minute or two, depending on the speed of your internet connection[preflight] You can also perform this action in beforehand using 'kubeadm config images pull'[certs] Using certificateDir folder "/etc/kubernetes/pki"[certs] Generating "ca" certificate and key[certs] Generating "apiserver" certificate and key[certs] apiserver serving cert is signed for DNS names [k8s.cluster-endpoint kubernetes kubernetes.default kubernetes.default.svc kubernetes.default.svc.cluster.local vm-k8s-master] and IPs [10.1.0.1 192.168.31.254][certs] Generating "apiserver-kubelet-client" certificate and key[certs] Generating "front-proxy-ca" certificate and key[certs] Generating "front-proxy-client" certificate and key[certs] Generating "etcd/ca" certificate and key[certs] Generating "etcd/server" certificate and key[certs] etcd/server serving cert is signed for DNS names [localhost vm-k8s-master] and IPs [192.168.31.254 127.0.0.1 ::1][certs] Generating "etcd/peer" certificate and key[certs] etcd/peer serving cert is signed for DNS names [localhost vm-k8s-master] and IPs [192.168.31.254 127.0.0.1 ::1][certs] Generating "etcd/healthcheck-client" certificate and key[certs] Generating "apiserver-etcd-client" certificate and key[certs] Generating "sa" key and public key[kubeconfig] Using kubeconfig folder "/etc/kubernetes"[kubeconfig] Writing "admin.conf" kubeconfig file[kubeconfig] Writing "kubelet.conf" kubeconfig file[kubeconfig] Writing "controller-manager.conf" kubeconfig file[kubeconfig] Writing "scheduler.conf" kubeconfig file[kubelet-start] Writing kubelet environment file with flags to file "/var/lib/kubelet/kubeadm-flags.env"[kubelet-start] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"[kubelet-start] Starting the kubelet[control-plane] Using manifest folder "/etc/kubernetes/manifests"[control-plane] Creating static Pod manifest for "kube-apiserver"[control-plane] Creating static Pod manifest for "kube-controller-manager"[control-plane] Creating static Pod manifest for "kube-scheduler"[etcd] Creating static Pod manifest for local etcd in "/etc/kubernetes/manifests"[wait-control-plane] Waiting for the kubelet to boot up the control plane as static Pods from directory "/etc/kubernetes/manifests". This can take up to 4m0s[apiclient] All control plane components are healthy after 6.002185 seconds[upload-config] Storing the configuration used in ConfigMap "kubeadm-config" in the "kube-system" Namespace[kubelet] Creating a ConfigMap "kubelet-config-1.23" in namespace kube-system with the configuration for the kubelets in the clusterNOTE: The "kubelet-config-1.23" naming of the kubelet ConfigMap is deprecated. Once the UnversionedKubeletConfigMap feature gate graduates to Beta the default name will become just "kubelet-config". Kubeadm upgrade will handle this transition transparently.[upload-certs] Skipping phase. Please see --upload-certs[mark-control-plane] Marking the node vm-k8s-master as control-plane by adding the labels: [node-role.kubernetes.io/master(deprecated) node-role.kubernetes.io/control-plane node.kubernetes.io/exclude-from-external-load-balancers][mark-control-plane] Marking the node vm-k8s-master as control-plane by adding the taints [node-role.kubernetes.io/master:NoSchedule][bootstrap-token] Using token: vz7g8m.fhgc8sby6tm6mi25[bootstrap-token] Configuring bootstrap tokens, cluster-info ConfigMap, RBAC Roles[bootstrap-token] configured RBAC rules to allow Node Bootstrap tokens to get nodes[bootstrap-token] configured RBAC rules to allow Node Bootstrap tokens to post CSRs in order for nodes to get long term certificate credentials[bootstrap-token] configured RBAC rules to allow the csrapprover controller automatically approve CSRs from a Node Bootstrap Token[bootstrap-token] configured RBAC rules to allow certificate rotation for all node client certificates in the cluster[bootstrap-token] Creating the "cluster-info" ConfigMap in the "kube-public" namespace[kubelet-finalize] Updating "/etc/kubernetes/kubelet.conf" to point to a rotatable kubelet client certificate and key[addons] Applied essential addon: CoreDNS[addons] Applied essential addon: kube-proxyYour Kubernetes control-plane has initialized successfully!To start using your cluster, you need to run the following as a regular user:  mkdir -p $HOME/.kube  sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config  sudo chown $(id -u):$(id -g) $HOME/.kube/configAlternatively, if you are the root user, you can run:  export KUBECONFIG=/etc/kubernetes/admin.confYou should now deploy a pod network to the cluster.Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:  https://kubernetes.io/docs/concepts/cluster-administration/addons/You can now join any number of control-plane nodes by copying certificate authoritiesand service account keys on each node and then running the following as root:  kubeadm join k8s.cluster-endpoint:6443 --token vz7g8m.fhgc8sby6tm6mi25 \    --discovery-token-ca-cert-hash sha256:e368eb6bdd202ff442cef277b97f12fe374d63071ff9dc277add24301609204d \    --control-plane Then you can join any number of worker nodes by running the following on each as root:kubeadm join k8s.cluster-endpoint:6443 --token vz7g8m.fhgc8sby6tm6mi25 \    --discovery-token-ca-cert-hash sha256:e368eb6bdd202ff442cef277b97f12fe374d63071ff9dc277add24301609204d 

阐明:以上日志中有两个比拟重要的信息,如下:

  • 集群增加工作节点的指令
  kubeadm join k8s.cluster-endpoint:6443 --token vz7g8m.fhgc8sby6tm6mi25 \    --discovery-token-ca-cert-hash sha256:e368eb6bdd202ff442cef277b97f12fe374d63071ff9dc277add24301609204d \    --control-plane 
  • kubectl客户端依赖的集群配置
#普通用户须要将集群配置复制到用户的家目录下,kubectl客户端会默认读取mkdir -p $HOME/.kubesudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/configsudo chown $(id -u):$(id -g) $HOME/.kube/config#root用户为了简略不便起见,设置环境变量echo "export KUBECONFIG=/etc/kubernetes/admin.conf" >> ~/.bash_profilesource ~/.bash_profile

阐明:Kubernetes 集群默认须要加密形式拜访。所以,这几条命令,就是将刚刚部署生成的 Kubernetes 集群的平安配置文件,保留到以后用户的.kube 目录下,kubectl 默认会应用这个目录下的受权信息拜访 Kubernetes集群。

3.3.3、为管制立体装置网络插件

初始化管制立体后,咱们首先来查看下节点的状态,会发现Master节点的状态是NotReady。

[root@vm-k8s-master k8s-init]# kubectl get nodesNAME            STATUS     ROLES                  AGE   VERSIONvm-k8s-master   NotReady   control-plane,master   24m   v1.23.5

进一步,通过 kubectl describe 指令的输入,咱们能够看到 NodeNotReady 的起因在于,咱们尚未部署任何网络插件。

[root@vm-k8s-master k8s-init]# kubectl describe node vm-k8s-masterName:               vm-k8s-masterRoles:              control-plane,masterLabels:             beta.kubernetes.io/arch=amd64                    beta.kubernetes.io/os=linux                    kubernetes.io/arch=amd64                    kubernetes.io/hostname=vm-k8s-master                    kubernetes.io/os=linux                    node-role.kubernetes.io/control-plane=                    node-role.kubernetes.io/master=                    node.kubernetes.io/exclude-from-external-load-balancers=Annotations:        kubeadm.alpha.kubernetes.io/cri-socket: /var/run/dockershim.sock                    node.alpha.kubernetes.io/ttl: 0                    volumes.kubernetes.io/controller-managed-attach-detach: trueCreationTimestamp:  Sat, 26 Mar 2022 16:48:43 +0800Taints:             node-role.kubernetes.io/master:NoSchedule                    node.kubernetes.io/not-ready:NoScheduleUnschedulable:      falseLease:  HolderIdentity:  vm-k8s-master  AcquireTime:     <unset>  RenewTime:       Sat, 26 Mar 2022 17:18:00 +0800Conditions:  Type             Status  LastHeartbeatTime                 LastTransitionTime                Reason                       Message  ----             ------  -----------------                 ------------------                ------                       -------  MemoryPressure   False   Sat, 26 Mar 2022 17:14:24 +0800   Sat, 26 Mar 2022 16:48:40 +0800   KubeletHasSufficientMemory   kubelet has sufficient memory available  DiskPressure     False   Sat, 26 Mar 2022 17:14:24 +0800   Sat, 26 Mar 2022 16:48:40 +0800   KubeletHasNoDiskPressure     kubelet has no disk pressure  PIDPressure      False   Sat, 26 Mar 2022 17:14:24 +0800   Sat, 26 Mar 2022 16:48:40 +0800   KubeletHasSufficientPID      kubelet has sufficient PID available  Ready            False   Sat, 26 Mar 2022 17:14:24 +0800   Sat, 26 Mar 2022 16:48:40 +0800   KubeletNotReady              container runtime network not ready: NetworkReady=false reason:NetworkPluginNotReady message:docker: network plugin is not ready: cni config uninitializedAddresses:  InternalIP:  192.168.31.254  Hostname:    vm-k8s-masterCapacity:  cpu:                2  ephemeral-storage:  39617640Ki  hugepages-1Gi:      0  hugepages-2Mi:      0  memory:             5925672Ki  pods:               110Allocatable:  cpu:                2  ephemeral-storage:  36511616964  hugepages-1Gi:      0  hugepages-2Mi:      0  memory:             5823272Ki  pods:               110System Info:  Machine ID:                 5bf19e1a8ca94a5c987c497fd9d169f9  System UUID:                4A364D56-F429-F892-581C-C7E2B013277E  Boot ID:                    8a40b366-2645-4ee1-bf40-90e60b23a2df  Kernel Version:             3.10.0-1160.el7.x86_64  OS Image:                   CentOS Linux 7 (Core)  Operating System:           linux  Architecture:               amd64  Container Runtime Version:  docker://20.10.13  Kubelet Version:            v1.23.5  Kube-Proxy Version:         v1.23.5PodCIDR:                      10.244.0.0/24PodCIDRs:                     10.244.0.0/24Non-terminated Pods:          (5 in total)  Namespace                   Name                                     CPU Requests  CPU Limits  Memory Requests  Memory Limits  Age  ---------                   ----                                     ------------  ----------  ---------------  -------------  ---  kube-system                 etcd-vm-k8s-master                       100m (5%)     0 (0%)      100Mi (1%)       0 (0%)         29m  kube-system                 kube-apiserver-vm-k8s-master             250m (12%)    0 (0%)      0 (0%)           0 (0%)         29m  kube-system                 kube-controller-manager-vm-k8s-master    200m (10%)    0 (0%)      0 (0%)           0 (0%)         29m  kube-system                 kube-proxy-dvrkb                         0 (0%)        0 (0%)      0 (0%)           0 (0%)         29m  kube-system                 kube-scheduler-vm-k8s-master             100m (5%)     0 (0%)      0 (0%)           0 (0%)         29mAllocated resources:  (Total limits may be over 100 percent, i.e., overcommitted.)  Resource           Requests    Limits  --------           --------    ------  cpu                650m (32%)  0 (0%)  memory             100Mi (1%)  0 (0%)  ephemeral-storage  0 (0%)      0 (0%)  hugepages-1Gi      0 (0%)      0 (0%)  hugepages-2Mi      0 (0%)      0 (0%)Events:  Type    Reason                   Age   From        Message  ----    ------                   ----  ----        -------  Normal  Starting                 28m   kube-proxy    Normal  Starting                 29m   kubelet     Starting kubelet.  Normal  NodeAllocatableEnforced  29m   kubelet     Updated Node Allocatable limit across pods  Normal  NodeHasSufficientMemory  29m   kubelet     Node vm-k8s-master status is now: NodeHasSufficientMemory  Normal  NodeHasNoDiskPressure    29m   kubelet     Node vm-k8s-master status is now: NodeHasNoDiskPressure  Normal  NodeHasSufficientPID     29m   kubelet     Node vm-k8s-master status is now: NodeHasSufficientPID

另外,能够看到,CoreDNS这个依赖于网络的Pod处于Pending状态,即调度失败。这当然是合乎预期的,因为这个 Master 节点的网络尚未就绪。

[root@vm-k8s-master k8s-init]# kubectl get pods -n kube-systemNAME                                    READY   STATUS    RESTARTS   AGEcoredns-6d8c4cb4d-6ldld                 0/1     Pending   0          31mcoredns-6d8c4cb4d-8z59l                 0/1     Pending   0          31metcd-vm-k8s-master                      1/1     Running   0          32mkube-apiserver-vm-k8s-master            1/1     Running   0          32mkube-controller-manager-vm-k8s-master   1/1     Running   0          32mkube-proxy-dvrkb                        1/1     Running   0          31mkube-scheduler-vm-k8s-master            1/1     Running   0          32m

3.3.3.1、装置flannel网络插件

在Kubernetes我的项目所有皆容器的设计理念领导下,部署网络插件也是采纳pod部署。

#如果网络容许可间接执行kubectl apply指令即可kubectl apply -f https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml#如果网络不容许,无奈下载kube-flannel.yml,能够手动复制以下的kube-flannel.yml文件内容,留神手动创立的kube-flannel.yml地位执行以下命令kubectl apply -f ./kube-flannel.yml
  • kube-flannel.yml文件内容
---apiVersion: policy/v1beta1kind: PodSecurityPolicymetadata:  name: psp.flannel.unprivileged  annotations:    seccomp.security.alpha.kubernetes.io/allowedProfileNames: docker/default    seccomp.security.alpha.kubernetes.io/defaultProfileName: docker/default    apparmor.security.beta.kubernetes.io/allowedProfileNames: runtime/default    apparmor.security.beta.kubernetes.io/defaultProfileName: runtime/defaultspec:  privileged: false  volumes:  - configMap  - secret  - emptyDir  - hostPath  allowedHostPaths:  - pathPrefix: "/etc/cni/net.d"  - pathPrefix: "/etc/kube-flannel"  - pathPrefix: "/run/flannel"  readOnlyRootFilesystem: false  # Users and groups  runAsUser:    rule: RunAsAny  supplementalGroups:    rule: RunAsAny  fsGroup:    rule: RunAsAny  # Privilege Escalation  allowPrivilegeEscalation: false  defaultAllowPrivilegeEscalation: false  # Capabilities  allowedCapabilities: ['NET_ADMIN', 'NET_RAW']  defaultAddCapabilities: []  requiredDropCapabilities: []  # Host namespaces  hostPID: false  hostIPC: false  hostNetwork: true  hostPorts:  - min: 0    max: 65535  # SELinux  seLinux:    # SELinux is unused in CaaSP    rule: 'RunAsAny'---kind: ClusterRoleapiVersion: rbac.authorization.k8s.io/v1metadata:  name: flannelrules:- apiGroups: ['extensions']  resources: ['podsecuritypolicies']  verbs: ['use']  resourceNames: ['psp.flannel.unprivileged']- apiGroups:  - ""  resources:  - pods  verbs:  - get- apiGroups:  - ""  resources:  - nodes  verbs:  - list  - watch- apiGroups:  - ""  resources:  - nodes/status  verbs:  - patch---kind: ClusterRoleBindingapiVersion: rbac.authorization.k8s.io/v1metadata:  name: flannelroleRef:  apiGroup: rbac.authorization.k8s.io  kind: ClusterRole  name: flannelsubjects:- kind: ServiceAccount  name: flannel  namespace: kube-system---apiVersion: v1kind: ServiceAccountmetadata:  name: flannel  namespace: kube-system---kind: ConfigMapapiVersion: v1metadata:  name: kube-flannel-cfg  namespace: kube-system  labels:    tier: node    app: flanneldata:  cni-conf.json: |    {      "name": "cbr0",      "cniVersion": "0.3.1",      "plugins": [        {          "type": "flannel",          "delegate": {            "hairpinMode": true,            "isDefaultGateway": true          }        },        {          "type": "portmap",          "capabilities": {            "portMappings": true          }        }      ]    }  net-conf.json: |    {      "Network": "10.244.0.0/16",      "Backend": {        "Type": "vxlan"      }    }---apiVersion: apps/v1kind: DaemonSetmetadata:  name: kube-flannel-ds  namespace: kube-system  labels:    tier: node    app: flannelspec:  selector:    matchLabels:      app: flannel  template:    metadata:      labels:        tier: node        app: flannel    spec:      affinity:        nodeAffinity:          requiredDuringSchedulingIgnoredDuringExecution:            nodeSelectorTerms:            - matchExpressions:              - key: kubernetes.io/os                operator: In                values:                - linux      hostNetwork: true      priorityClassName: system-node-critical      tolerations:      - operator: Exists        effect: NoSchedule      serviceAccountName: flannel      initContainers:      - name: install-cni-plugin       #image: flannelcni/flannel-cni-plugin:v1.0.1 for ppc64le and mips64le (dockerhub limitations may apply)        image: rancher/mirrored-flannelcni-flannel-cni-plugin:v1.0.1        command:        - cp        args:        - -f        - /flannel        - /opt/cni/bin/flannel        volumeMounts:        - name: cni-plugin          mountPath: /opt/cni/bin      - name: install-cni       #image: flannelcni/flannel:v0.17.0 for ppc64le and mips64le (dockerhub limitations may apply)        image: rancher/mirrored-flannelcni-flannel:v0.17.0        command:        - cp        args:        - -f        - /etc/kube-flannel/cni-conf.json        - /etc/cni/net.d/10-flannel.conflist        volumeMounts:        - name: cni          mountPath: /etc/cni/net.d        - name: flannel-cfg          mountPath: /etc/kube-flannel/      containers:      - name: kube-flannel       #image: flannelcni/flannel:v0.17.0 for ppc64le and mips64le (dockerhub limitations may apply)        image: rancher/mirrored-flannelcni-flannel:v0.17.0        command:        - /opt/bin/flanneld        args:        - --ip-masq        - --kube-subnet-mgr        resources:          requests:            cpu: "100m"            memory: "50Mi"          limits:            cpu: "100m"            memory: "50Mi"        securityContext:          privileged: false          capabilities:            add: ["NET_ADMIN", "NET_RAW"]        env:        - name: POD_NAME          valueFrom:            fieldRef:              fieldPath: metadata.name        - name: POD_NAMESPACE          valueFrom:            fieldRef:              fieldPath: metadata.namespace        volumeMounts:        - name: run          mountPath: /run/flannel        - name: flannel-cfg          mountPath: /etc/kube-flannel/        - name: xtables-lock          mountPath: /run/xtables.lock      volumes:      - name: run        hostPath:          path: /run/flannel      - name: cni-plugin        hostPath:          path: /opt/cni/bin      - name: cni        hostPath:          path: /etc/cni/net.d      - name: flannel-cfg        configMap:          name: kube-flannel-cfg      - name: xtables-lock        hostPath:          path: /run/xtables.lock          type: FileOrCreate
  • 装置flannel网络插件日志
[root@vm-k8s-master k8s-init]# kubectl apply -f ./kube-flannel.yml Warning: policy/v1beta1 PodSecurityPolicy is deprecated in v1.21+, unavailable in v1.25+podsecuritypolicy.policy/psp.flannel.unprivileged createdclusterrole.rbac.authorization.k8s.io/flannel createdclusterrolebinding.rbac.authorization.k8s.io/flannel createdserviceaccount/flannel unchangedconfigmap/kube-flannel-cfg configureddaemonset.apps/kube-flannel-ds created
  • 网络插件部署实现后,咱们能够通过 kubectl get从新查看Pod的状态
[root@vm-k8s-master k8s-init]# kubectl get pod -n kube-systemNAME                                    READY   STATUS    RESTARTS   AGEcoredns-6d8c4cb4d-6ldld                 1/1     Running   0          95mcoredns-6d8c4cb4d-8z59l                 1/1     Running   0          95metcd-vm-k8s-master                      1/1     Running   0          95mkube-apiserver-vm-k8s-master            1/1     Running   0          95mkube-controller-manager-vm-k8s-master   1/1     Running   0          95mkube-flannel-ds-gwccf                   1/1     Running   0          38skube-proxy-dvrkb                        1/1     Running   0          95mkube-scheduler-vm-k8s-master            1/1     Running   0          95m

能够看到,所有的零碎 Pod 都胜利启动了,而刚刚部署的flannel网络插件则在kube-system上面新建了一个名叫kube-flannel-ds-gwccf的Pod,一般来说,这些Pod就是容器网络插件在每个节点上的管制组件。
至此,Kubernetes 的 Master 节点就部署实现了。如果你只须要一个单节点的 Kubernetes,当初你就能够应用了。不过,在默认状况下,Kubernetes 的 Master 节点是不能运行用户 Pod 的,所以还须要额定做一个小操作。

3.3.4、管制立体节点污点打消

默认状况下Master节点是不容许运行用户Pod的。而Kubernetes做到这一点,依附的是 Kubernetes的Taint/Toleration机制。
它的原理非常简单:一旦某个节点被加上了一个Taint,即被“打上了污点”,那么所有Pod就都不能在这个节点上运行,因为Kubernetes的Pod都有“洁癖”。除非,有个别的Pod申明本人能“容忍”这个“污点”,即申明了Toleration,它才能够在这个节点上运行。

  • 为节点打上“污点”(Taint)的命令是
#该node1节点上就会减少一个键值对格局的 Taint,即:foo=bar:NoSchedule。其中值外面的 NoSchedule,意味着这个Taint只会在调度新Pod时产生作用,而不会影响曾经在 node1 上运行的 Pod,哪怕它们没有Tolerationkubectl taint nodes node1 foo=bar:NoSchedule
  • Pod申明Toleration污点
apiVersion: v1kind: Pod...spec:  tolerations:  - key: "foo"    operator: "Equal"    value: "bar"    effect: "NoSchedule"

这个 Toleration 的含意是,这个Pod能“容忍”所有键值对为foo=bar的Taint(operator: “Equal”,“等于”操作)。

  • kubectl describe查看Master节点的Taint字段
[root@vm-k8s-master k8s-init]# kubectl describe node vm-k8s-masterName:               vm-k8s-masterRoles:              control-plane,masterLabels:             beta.kubernetes.io/arch=amd64                    beta.kubernetes.io/os=linux                    kubernetes.io/arch=amd64                    kubernetes.io/hostname=vm-k8s-master                    kubernetes.io/os=linux                    node-role.kubernetes.io/control-plane=                    node-role.kubernetes.io/master=                    node.kubernetes.io/exclude-from-external-load-balancers=Annotations:        flannel.alpha.coreos.com/backend-data: {"VNI":1,"VtepMAC":"d6:07:13:de:95:c6"}                    flannel.alpha.coreos.com/backend-type: vxlan                    flannel.alpha.coreos.com/kube-subnet-manager: true                    flannel.alpha.coreos.com/public-ip: 192.168.31.254                    kubeadm.alpha.kubernetes.io/cri-socket: /var/run/dockershim.sock                    node.alpha.kubernetes.io/ttl: 0                    volumes.kubernetes.io/controller-managed-attach-detach: trueCreationTimestamp:  Sat, 26 Mar 2022 16:48:43 +0800Taints:             node-role.kubernetes.io/master:NoSchedule

能够看到,Master节点默认被加上了node-role.kubernetes.io/master:NoSchedule这样一个“污点”,其中“键”是node-role.kubernetes.io/master,而没有提供“值”。

  • 删除master节点的默认污点
    为了不便起见,测试学习环境须要master节点也能被调度pod运行,简略粗犷地为master节点删除掉默认污点。
#在“node-role.kubernetes.io/master”这个键前面加上了一个短横线“-”,这个格局就意味着移除所有以“node-role.kubernetes.io/master”为键的 Taint。kubectl taint nodes --all node-role.kubernetes.io/master-

3.4、为Kubernetes集群增加工作节点

Kubernetes的Worker节点跟Master节点简直是雷同的,它们运行着的都是一个 kubelet 组件。惟一的区别在于,在kubeadm init的过程中,kubelet 启动后,Master 节点上还会主动运行 kube-apiserver、kube-scheduler、kube-controller-manger 这三个零碎 Pod。
到这里默认工作节点曾经装置了kubeadm、kubectl、kubelet、docker。接下来只有执行kubeadm init的过程中生成的kubeadm join执行就能够了。

  • 执行部署Master节点时生成的kubeadm join指令
kubeadm join k8s.cluster-endpoint:6443 --token vz7g8m.fhgc8sby6tm6mi25 \    --discovery-token-ca-cert-hash sha256:e368eb6bdd202ff442cef277b97f12fe374d63071ff9dc277add24301609204d
  • worker节点退出集群日志输入
[root@vm-k8s-worker01 manifests]# kubeadm join k8s.cluster-endpoint:6443 --token vz7g8m.fhgc8sby6tm6mi25 \>     --discovery-token-ca-cert-hash sha256:e368eb6bdd202ff442cef277b97f12fe374d63071ff9dc277add24301609204d[preflight] Running pre-flight checks[preflight] Reading configuration from the cluster...[preflight] FYI: You can look at this config file with 'kubectl -n kube-system get cm kubeadm-config -o yaml'[kubelet-start] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"[kubelet-start] Writing kubelet environment file with flags to file "/var/lib/kubelet/kubeadm-flags.env"[kubelet-start] Starting the kubelet[kubelet-start] Waiting for the kubelet to perform the TLS Bootstrap...This node has joined the cluster:* Certificate signing request was sent to apiserver and a response was received.* The Kubelet was informed of the new secure connection details.Run 'kubectl get nodes' on the control-plane to see this node join the cluster.

3.5、部署和拜访 Kubernetes 仪表板(Dashboard)

Dashboard 是基于网页的 Kubernetes 用户界面。 你能够应用 Dashboard 将容器利用部署到 Kubernetes 集群中,也能够对容器利用排错,还能治理集群资源。你能够应用 Dashboard 获取运行在集群中的利用的概览信息,也能够创立或者批改 Kubernetes资源(如 Deployment,Job,DaemonSet 等等)。 例如,你能够对Deployment实现弹性伸缩、发动滚动降级、重启 Pod 或者应用向导创立新的利用。
Dashboard 同时展现了 Kubernetes 集群中的资源状态信息和所有报错信息。

  • 参考官网部署文档

3.5.1、部署Dashboard可视化插件

#向k8s集群提交dashboard资源组件配置,如果网络不通,可复制以下提供的配置文件内容kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/v2.5.0/aio/deploy/recommended.yaml
  • kubernetes-dashboard.yaml文件内容
# Copyright 2017 The Kubernetes Authors.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at##     http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.apiVersion: v1kind: Namespacemetadata:  name: kubernetes-dashboard---apiVersion: v1kind: ServiceAccountmetadata:  labels:    k8s-app: kubernetes-dashboard  name: kubernetes-dashboard  namespace: kubernetes-dashboard---kind: ServiceapiVersion: v1metadata:  labels:    k8s-app: kubernetes-dashboard  name: kubernetes-dashboard  namespace: kubernetes-dashboardspec:  ports:    - port: 443      targetPort: 8443  selector:    k8s-app: kubernetes-dashboard---apiVersion: v1kind: Secretmetadata:  labels:    k8s-app: kubernetes-dashboard  name: kubernetes-dashboard-certs  namespace: kubernetes-dashboardtype: Opaque---apiVersion: v1kind: Secretmetadata:  labels:    k8s-app: kubernetes-dashboard  name: kubernetes-dashboard-csrf  namespace: kubernetes-dashboardtype: Opaquedata:  csrf: ""---apiVersion: v1kind: Secretmetadata:  labels:    k8s-app: kubernetes-dashboard  name: kubernetes-dashboard-key-holder  namespace: kubernetes-dashboardtype: Opaque---kind: ConfigMapapiVersion: v1metadata:  labels:    k8s-app: kubernetes-dashboard  name: kubernetes-dashboard-settings  namespace: kubernetes-dashboard---kind: RoleapiVersion: rbac.authorization.k8s.io/v1metadata:  labels:    k8s-app: kubernetes-dashboard  name: kubernetes-dashboard  namespace: kubernetes-dashboardrules:  # Allow Dashboard to get, update and delete Dashboard exclusive secrets.  - apiGroups: [""]    resources: ["secrets"]    resourceNames: ["kubernetes-dashboard-key-holder", "kubernetes-dashboard-certs", "kubernetes-dashboard-csrf"]    verbs: ["get", "update", "delete"]    # Allow Dashboard to get and update 'kubernetes-dashboard-settings' config map.  - apiGroups: [""]    resources: ["configmaps"]    resourceNames: ["kubernetes-dashboard-settings"]    verbs: ["get", "update"]    # Allow Dashboard to get metrics.  - apiGroups: [""]    resources: ["services"]    resourceNames: ["heapster", "dashboard-metrics-scraper"]    verbs: ["proxy"]  - apiGroups: [""]    resources: ["services/proxy"]    resourceNames: ["heapster", "http:heapster:", "https:heapster:", "dashboard-metrics-scraper", "http:dashboard-metrics-scraper"]    verbs: ["get"]---kind: ClusterRoleapiVersion: rbac.authorization.k8s.io/v1metadata:  labels:    k8s-app: kubernetes-dashboard  name: kubernetes-dashboardrules:  # Allow Metrics Scraper to get metrics from the Metrics server  - apiGroups: ["metrics.k8s.io"]    resources: ["pods", "nodes"]    verbs: ["get", "list", "watch"]---apiVersion: rbac.authorization.k8s.io/v1kind: RoleBindingmetadata:  labels:    k8s-app: kubernetes-dashboard  name: kubernetes-dashboard  namespace: kubernetes-dashboardroleRef:  apiGroup: rbac.authorization.k8s.io  kind: Role  name: kubernetes-dashboardsubjects:  - kind: ServiceAccount    name: kubernetes-dashboard    namespace: kubernetes-dashboard---apiVersion: rbac.authorization.k8s.io/v1kind: ClusterRoleBindingmetadata:  name: kubernetes-dashboardroleRef:  apiGroup: rbac.authorization.k8s.io  kind: ClusterRole  name: kubernetes-dashboardsubjects:  - kind: ServiceAccount    name: kubernetes-dashboard    namespace: kubernetes-dashboard---kind: DeploymentapiVersion: apps/v1metadata:  labels:    k8s-app: kubernetes-dashboard  name: kubernetes-dashboard  namespace: kubernetes-dashboardspec:  replicas: 1  revisionHistoryLimit: 10  selector:    matchLabels:      k8s-app: kubernetes-dashboard  template:    metadata:      labels:        k8s-app: kubernetes-dashboard    spec:      securityContext:        seccompProfile:          type: RuntimeDefault      containers:        - name: kubernetes-dashboard          image: kubernetesui/dashboard:v2.5.0          imagePullPolicy: Always          ports:            - containerPort: 8443              protocol: TCP          args:            - --auto-generate-certificates            - --namespace=kubernetes-dashboard            # Uncomment the following line to manually specify Kubernetes API server Host            # If not specified, Dashboard will attempt to auto discover the API server and connect            # to it. Uncomment only if the default does not work.            # - --apiserver-host=http://my-address:port          volumeMounts:            - name: kubernetes-dashboard-certs              mountPath: /certs              # Create on-disk volume to store exec logs            - mountPath: /tmp              name: tmp-volume          livenessProbe:            httpGet:              scheme: HTTPS              path: /              port: 8443            initialDelaySeconds: 30            timeoutSeconds: 30          securityContext:            allowPrivilegeEscalation: false            readOnlyRootFilesystem: true            runAsUser: 1001            runAsGroup: 2001      volumes:        - name: kubernetes-dashboard-certs          secret:            secretName: kubernetes-dashboard-certs        - name: tmp-volume          emptyDir: {}      serviceAccountName: kubernetes-dashboard      nodeSelector:        "kubernetes.io/os": linux      # Comment the following tolerations if Dashboard must not be deployed on master      tolerations:        - key: node-role.kubernetes.io/master          effect: NoSchedule---kind: ServiceapiVersion: v1metadata:  labels:    k8s-app: dashboard-metrics-scraper  name: dashboard-metrics-scraper  namespace: kubernetes-dashboardspec:  ports:    - port: 8000      targetPort: 8000  selector:    k8s-app: dashboard-metrics-scraper---kind: DeploymentapiVersion: apps/v1metadata:  labels:    k8s-app: dashboard-metrics-scraper  name: dashboard-metrics-scraper  namespace: kubernetes-dashboardspec:  replicas: 1  revisionHistoryLimit: 10  selector:    matchLabels:      k8s-app: dashboard-metrics-scraper  template:    metadata:      labels:        k8s-app: dashboard-metrics-scraper    spec:      securityContext:        seccompProfile:          type: RuntimeDefault      containers:        - name: dashboard-metrics-scraper          image: kubernetesui/metrics-scraper:v1.0.7          ports:            - containerPort: 8000              protocol: TCP          livenessProbe:            httpGet:              scheme: HTTP              path: /              port: 8000            initialDelaySeconds: 30            timeoutSeconds: 30          volumeMounts:          - mountPath: /tmp            name: tmp-volume          securityContext:            allowPrivilegeEscalation: false            readOnlyRootFilesystem: true            runAsUser: 1001            runAsGroup: 2001      serviceAccountName: kubernetes-dashboard      nodeSelector:        "kubernetes.io/os": linux      # Comment the following tolerations if Dashboard must not be deployed on master      tolerations:        - key: node-role.kubernetes.io/master          effect: NoSchedule      volumes:        - name: tmp-volume          emptyDir: {}
  • kubernetes-dashboard装置日志
[root@vm-k8s-master k8s-init]# kubectl apply -f ./kubernetes-dashboard.yaml namespace/kubernetes-dashboard createdserviceaccount/kubernetes-dashboard createdservice/kubernetes-dashboard createdsecret/kubernetes-dashboard-certs createdsecret/kubernetes-dashboard-csrf createdsecret/kubernetes-dashboard-key-holder createdconfigmap/kubernetes-dashboard-settings createdrole.rbac.authorization.k8s.io/kubernetes-dashboard createdclusterrole.rbac.authorization.k8s.io/kubernetes-dashboard createdrolebinding.rbac.authorization.k8s.io/kubernetes-dashboard createdclusterrolebinding.rbac.authorization.k8s.io/kubernetes-dashboard createddeployment.apps/kubernetes-dashboard createdservice/dashboard-metrics-scraper createddeployment.apps/dashboard-metrics-scraper created

3.5.2、创立超级管理员的账号用于登录Dashboard

Dashboard是一个Web Server,很多人常常会在本人的私有云上无心地裸露 Dashboard 的端口,从而造成安全隐患。所以,1.7 版本之后的 Dashboard 我的项目部署实现后,默认只能通过 Proxy的形式在本地拜访。

  • 创立用户,并绑定集群admin权限
apiVersion: v1kind: ServiceAccountmetadata:  name: admin-user  namespace: kubernetes-dashboard---apiVersion: rbac.authorization.k8s.io/v1kind: ClusterRoleBindingmetadata:  name: admin-userroleRef:  apiGroup: rbac.authorization.k8s.io  kind: ClusterRole  name: cluster-adminsubjects:- kind: ServiceAccount  name: admin-user  namespace: kubernetes-dashboard
  • 生成Bearer Token
kubectl -n kubernetes-dashboard get secret $(kubectl -n kubernetes-dashboard get sa/admin-user -o jsonpath="{.secrets[0].name}") -o go-template="{{.data.token | base64decode}}"#打印输出信息如下eyJhbGciOiJSUzI1NiIsImtpZCI6Il9uU25iZHpROE5WZkZOcDFFeGhGT0JRQjZOal93Zk1qOHNVVlRsQVU2QmMifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlcm5ldGVzLWRhc2hib2FyZCIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJhZG1pbi11c2VyLXRva2VuLWRzbDR2Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ2aWNlLWFjY291bnQubmFtZSI6ImFkbWluLXVzZXIiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC51aWQiOiI0MzJkNTA5Yy0zNTQ4LTRlYTktOTNmZi03NTM2ZDkxY2YwMTIiLCJzdWIiOiJzeXN0ZW06c2VydmljZWFjY291bnQ6a3ViZXJuZXRlcy1kYXNoYm9hcmQ6YWRtaW4tdXNlciJ9.RLl_jz41Snyc4qEHFk9-o_JYKfv22Lv2JquTgXX92_9k9VQOswd7RhF1OsWywVfd5TKq9_tagMDfVRqHo6fVe-jB4blUL6j6iTxtkFno7P9snqboFsEoegSFCM-S9OaF1C5Dk_rcIp2yJzbALkmTC6VjdWxPt3TvjEclXRQl0cITlE1NFmJKpJqbNlG65l4SjnRO5KLinrgYfpcLxlroqlKd4ZFWenKrz16VOicCUHuP_mWlq4yxp_WRrfpCglX92u-sDY3ouJW5cL0eqk-w5XKhREFvm-C2Opoba-mDZVcbaQxEIw_VkeudLliSUs5_v9CKQGKPYK6r6rdESYi6sw

3.5.3、批改kubernetes-dashboard的service

为了更敌对的拜访dashboard服务,须要批改kubernetes-dashboard.yaml的service配置局部,将service type从ClusterIP批改为NodePort的形式。

kind: ServiceapiVersion: v1metadata:  labels:    k8s-app: kubernetes-dashboard  name: kubernetes-dashboard  namespace: kubernetes-dashboardspec:  type: NodePort  ports:    - port: 443      targetPort: 8443      nodePort: 30001  selector:    k8s-app: kubernetes-dashboard
  • 更新以上配置文件后,执行kubectl apply更新资源对象
kubectl apply -f ./kubernetes-dashboard.yaml
  • 查看更新后的service资源对象
[root@vm-k8s-master k8s-init]# kubectl get svc -n kubernetes-dashboardNAME                        TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)         AGEdashboard-metrics-scraper   ClusterIP   10.1.245.206   <none>        8000/TCP        62mkubernetes-dashboard        NodePort    10.1.50.101    <none>        443:30001/TCP   62m

3.5.4、拜访kubernetes-dashboard

#留神此处的https协定,抉择token的认证形式,复制早前生成的token即可https://k8s.master.com:30001/

3.6、部署rook存储插件

Rook 我的项目是一个基于Ceph的Kubernetes 存储插件(它前期也在退出对更多存储实现的反对)。不过,不同于对Ceph的简略封装,Rook 在本人的实现中退出了程度扩大、迁徙、劫难备份、监控等大量的企业级性能,使得这个我的项目变成了一个残缺的、生产级别可用的容器存储插件。
可在生产环境中对文件存储、块存储和对象存储进行治理。Rook由云原生计算基金会(CNCF) 作为毕业级我的项目托管。Rook是用golang 实现的。Ceph 是用C++实现的。

  • 更多信息参考rook官网
  • 查看rook github

3.6.1、部署rook存储插件前置条件

以以后最新的rook版本为v1.8.7为例,进行以下的装置步骤。为了配置Ceph存储集群,至多须要以下本地存储选项之一。

  • 原始设施(无分区或格式化文件系统)
  • 原始分区(无格式化文件系统)
  • 可通过block模式从存储类取得PV
  • 集群至多须要三个节点,每个节点至多须要一个OSD(对象存储设备),保障存储类的创立
  • 须要Kubernetesv1.16或更高版本

3.6.2、部署rook存储插件前置筹备

因为本次搭建的环境,机器是通过VMware创立进去的,所以能够很不便地为每个虚拟机增加一块全新的硬盘。用于后续rook集群作为一个OSD(对象存储设备)。

  • VMware增加虚拟机硬盘,参考vmware官网文档
1、抉择该虚拟机,而后抉择虚拟机 > 设置。2、在硬件选项卡中,单击增加。3、在新建硬件向导中,抉择硬盘。4、抉择创立新虚构磁盘。5、抉择磁盘类型。

  • 查看磁盘块设施
[root@vm-k8s-worker01 ~]# lsblk -fNAME                            FSTYPE      LABEL           UUID                                   MOUNTPOINTsda                                                                                                ├─sda1                          xfs                         8fd14e7c-6b98-4845-bd19-2f1eb6b175b0   /boot└─sda2                          LVM2_member                 ZT7jhW-IRXs-0KBo-FGSk-C85B-hnOA-upyrdP   ├─centos_vm--k8s--jayway-root xfs                         477d2f79-9e28-49a0-8f5f-01c69014014b   /  └─centos_vm--k8s--jayway-swap swap                        949d1c1f-abe7-4fd2-9232-40526e1b8637   sdb                                                                                                sr0                             iso9660     CentOS 7 x86_64 2020-11-04-11-36-43-00   

阐明:留神FSTYPE字段的值,如果为空,则示意以后的设施尚未写入文件系统,例如以上的sdb设施就是刚新增的硬盘设施。

3.6.3、部署rook存储插件前置筹备

  • 克隆rook git仓库
#以后最新版本为v1.8.7git clone --single-branch --branch v1.8.7 https://github.com/rook/rook.git
  • 查看rook集群部署的相干K8S资源配置文件
    进入rook/deploy/examples目录,可查看rook我的项目提供了很多K8S资源配置文件。临时咱们只须要关注个别的资源配置文件。
资源文件形容
crds.yaml创立rook集群前,首先须要被创立的CRD资源对象,让k8s意识rook的自定义资源
common.yaml启动operator和ceph cluster所必须得通用资源,必须先于operator.yaml、cluster.yaml资源被创立
operator.yamlrook operator控制器
cluster.yamlrook-ceph cluster配置
storageclass.yaml创立存储类,为k8s集群提供动态创建pv的能力
mysql.yamlrook官网提供的mysql测试服务,依赖于storageclass创立的pv长久化
wordpress.yamlrook官网提供的wordpress测试服务,依赖于storageclass创立的pv长久化
-rw-r--r--. 1 root root    696 3月  27 10:27 bucket-notification-endpoint.yaml-rw-r--r--. 1 root root   1258 3月  27 10:27 bucket-notification.yaml-rw-r--r--. 1 root root    842 3月  27 10:27 bucket-topic.yaml-rw-r--r--. 1 root root    456 3月  27 10:27 ceph-client.yaml-rw-r--r--. 1 root root   1088 3月  27 10:27 cluster-external-management.yaml-rw-r--r--. 1 root root   1275 3月  27 10:27 cluster-external.yaml-rw-r--r--. 1 root root   7350 3月  27 10:27 cluster-on-local-pvc.yaml-rw-r--r--. 1 root root   8539 3月  27 10:27 cluster-on-pvc.yaml-rw-r--r--. 1 root root   5376 3月  27 10:27 cluster-stretched-aws.yaml-rw-r--r--. 1 root root   3312 3月  27 10:27 cluster-stretched.yaml-rw-r--r--. 1 root root   1798 3月  27 10:27 cluster-test.yaml-rw-r--r--. 1 root root  15343 3月  27 10:27 cluster.yaml-rw-r--r--. 1 root root   2418 3月  27 10:27 common-external.yaml-rw-r--r--. 1 root root   3908 3月  27 10:27 common-second-cluster.yaml-rw-r--r--. 1 root root  38180 3月  27 10:27 common.yaml-rw-r--r--. 1 root root 739053 3月  27 10:27 crds.yaml-rw-r--r--. 1 root root  75912 3月  27 10:27 create-external-cluster-resources.py-rw-r--r--. 1 root root   3696 3月  27 10:27 create-external-cluster-resources.shdrwxr-xr-x. 4 root root     31 3月  27 10:27 csi-rw-r--r--. 1 root root    430 3月  27 10:27 dashboard-external-https.yaml-rw-r--r--. 1 root root    429 3月  27 10:27 dashboard-external-http.yaml-rw-r--r--. 1 root root    988 3月  27 10:27 dashboard-ingress-https.yaml-rw-r--r--. 1 root root    432 3月  27 10:27 dashboard-loadbalancer.yaml-rw-r--r--. 1 root root   1904 3月  27 10:27 direct-mount.yaml-rw-r--r--. 1 root root   3729 3月  27 10:27 filesystem-ec.yaml-rw-r--r--. 1 root root   1253 3月  27 10:27 filesystem-mirror.yaml-rw-r--r--. 1 root root    825 3月  27 10:27 filesystem-test.yaml-rw-r--r--. 1 root root   5378 3月  27 10:27 filesystem.yaml-rw-r--r--. 1 root root    416 3月  27 10:27 images.txt-rw-r--r--. 1 root root   5142 3月  27 10:27 import-external-cluster.shdrwxr-xr-x. 2 root root   4096 3月  27 10:27 monitoring-rw-r--r--. 1 root root   1269 3月  27 10:27 mysql.yaml-rw-r--r--. 1 root root    747 3月  27 10:27 nfs-test.yaml-rw-r--r--. 1 root root   2635 3月  27 10:27 nfs.yaml-rw-r--r--. 1 root root    604 3月  27 10:27 object-bucket-claim-delete.yaml-rw-r--r--. 1 root root    502 3月  27 10:27 object-bucket-claim-notification.yaml-rw-r--r--. 1 root root    604 3月  27 10:27 object-bucket-claim-retain.yaml-rw-r--r--. 1 root root   3793 3月  27 10:27 object-ec.yaml-rw-r--r--. 1 root root    836 3月  27 10:27 object-external.yaml-rw-r--r--. 1 root root   1991 3月  27 10:27 object-multisite-pull-realm-test.yaml-rw-r--r--. 1 root root   2064 3月  27 10:27 object-multisite-pull-realm.yaml-rw-r--r--. 1 root root   1339 3月  27 10:27 object-multisite-test.yaml-rw-r--r--. 1 root root   1365 3月  27 10:27 object-multisite.yaml-rw-r--r--. 1 root root   6090 3月  27 10:27 object-openshift.yaml-rw-r--r--. 1 root root    707 3月  27 10:27 object-test.yaml-rw-r--r--. 1 root root    795 3月  27 10:27 object-user.yaml-rw-r--r--. 1 root root   5835 3月  27 10:27 object.yaml-rw-r--r--. 1 root root  23608 3月  27 10:27 operator-openshift.yaml-rw-r--r--. 1 root root  21444 3月  27 10:27 operator.yaml-rw-r--r--. 1 root root    944 3月  27 10:27 osd-env-override.yaml-rw-r--r--. 1 root root   3150 3月  27 10:27 osd-purge.yaml-rw-r--r--. 1 root root    797 3月  27 10:27 pool-device-health-metrics.yaml-rw-r--r--. 1 root root   1127 3月  27 10:27 pool-ec.yaml-rw-r--r--. 1 root root    507 3月  27 10:27 pool-mirrored.yaml-rw-r--r--. 1 root root    539 3月  27 10:27 pool-test.yaml-rw-r--r--. 1 root root   3461 3月  27 10:27 pool.yaml-rw-r--r--. 1 root root   1515 3月  27 10:27 rbdmirror.yaml-rw-r--r--. 1 root root    130 3月  27 10:27 README.md-rw-r--r--. 1 root root    546 3月  27 10:27 rgw-external.yaml-rw-r--r--. 1 root root    754 3月  27 10:27 storageclass-bucket-delete.yaml-rw-r--r--. 1 root root    752 3月  27 10:27 storageclass-bucket-retain.yaml-rw-r--r--. 1 root root    281 3月  27 10:27 subvolumegroup.yaml-rw-r--r--. 1 root root   1796 3月  27 10:27 toolbox-job.yaml-rw-r--r--. 1 root root   1672 3月  27 10:27 toolbox.yaml-rw-r--r--. 1 root root    460 3月  27 10:27 volume-replication-class.yaml-rw-r--r--. 1 root root    352 3月  27 10:27 volume-replication.yaml-rw-r--r--. 1 root root   1369 3月  27 10:27 wordpress.yaml

3.6.4、rook存储插件装置

rook各个资源对象依赖的镜像如下所示,这些镜像也是在谷歌的镜像仓库。

[root@vm-k8s-master examples]# pwd/root/k8s-init/rook-git/deploy/examples[root@vm-k8s-master examples]# cat images.txt  k8s.gcr.io/sig-storage/csi-attacher:v3.4.0 k8s.gcr.io/sig-storage/csi-node-driver-registrar:v2.5.0 k8s.gcr.io/sig-storage/csi-provisioner:v3.1.0 k8s.gcr.io/sig-storage/csi-resizer:v1.4.0 k8s.gcr.io/sig-storage/csi-snapshotter:v5.0.1 quay.io/ceph/ceph:v16.2.7 quay.io/cephcsi/cephcsi:v3.5.1 quay.io/csiaddons/k8s-sidecar:v0.2.1 quay.io/csiaddons/volumereplication-operator:v0.3.0 rook/ceph:v1.8.7
3.6.4.1、创立的CRD资源对象

创立rook集群前,首先须要被创立的CRD资源对象,让k8s意识rook的自定义资源;此资源文件未依赖镜像。

#以后门路:rook/deploy/exampleskubectl apply -f crds.yaml
  • 执行日志
[root@vm-k8s-master examples]# kubectl apply -f crds.yamlcustomresourcedefinition.apiextensions.k8s.io/cephblockpools.ceph.rook.io createdcustomresourcedefinition.apiextensions.k8s.io/cephbucketnotifications.ceph.rook.io createdcustomresourcedefinition.apiextensions.k8s.io/cephbuckettopics.ceph.rook.io createdcustomresourcedefinition.apiextensions.k8s.io/cephclients.ceph.rook.io createdcustomresourcedefinition.apiextensions.k8s.io/cephclusters.ceph.rook.io createdcustomresourcedefinition.apiextensions.k8s.io/cephfilesystemmirrors.ceph.rook.io createdcustomresourcedefinition.apiextensions.k8s.io/cephfilesystems.ceph.rook.io createdcustomresourcedefinition.apiextensions.k8s.io/cephfilesystemsubvolumegroups.ceph.rook.io createdcustomresourcedefinition.apiextensions.k8s.io/cephnfses.ceph.rook.io createdcustomresourcedefinition.apiextensions.k8s.io/cephobjectrealms.ceph.rook.io createdcustomresourcedefinition.apiextensions.k8s.io/cephobjectstores.ceph.rook.io createdcustomresourcedefinition.apiextensions.k8s.io/cephobjectstoreusers.ceph.rook.io createdcustomresourcedefinition.apiextensions.k8s.io/cephobjectzonegroups.ceph.rook.io createdcustomresourcedefinition.apiextensions.k8s.io/cephobjectzones.ceph.rook.io createdcustomresourcedefinition.apiextensions.k8s.io/cephrbdmirrors.ceph.rook.io createdcustomresourcedefinition.apiextensions.k8s.io/objectbucketclaims.objectbucket.io createdcustomresourcedefinition.apiextensions.k8s.io/objectbuckets.objectbucket.io created
3.6.4.2、创立通用资源对象

启动operator和ceph cluster所必须得通用资源,必须先于operator.yaml、cluster.yaml资源被创立。此资源文件未依赖镜像。

#以后门路:rook/deploy/exampleskubectl apply -f common.yaml
  • 执行日志
[root@vm-k8s-master examples]# kubectl apply -f common.yamlnamespace/rook-ceph createdclusterrole.rbac.authorization.k8s.io/cephfs-csi-nodeplugin createdclusterrole.rbac.authorization.k8s.io/cephfs-external-provisioner-runner createdclusterrole.rbac.authorization.k8s.io/psp:rook createdclusterrole.rbac.authorization.k8s.io/rbd-csi-nodeplugin createdclusterrole.rbac.authorization.k8s.io/rbd-external-provisioner-runner createdclusterrole.rbac.authorization.k8s.io/rook-ceph-cluster-mgmt createdclusterrole.rbac.authorization.k8s.io/rook-ceph-global createdclusterrole.rbac.authorization.k8s.io/rook-ceph-mgr-cluster createdclusterrole.rbac.authorization.k8s.io/rook-ceph-mgr-system createdclusterrole.rbac.authorization.k8s.io/rook-ceph-object-bucket createdclusterrole.rbac.authorization.k8s.io/rook-ceph-osd createdclusterrole.rbac.authorization.k8s.io/rook-ceph-system createdclusterrolebinding.rbac.authorization.k8s.io/cephfs-csi-nodeplugin createdclusterrolebinding.rbac.authorization.k8s.io/cephfs-csi-provisioner-role createdclusterrolebinding.rbac.authorization.k8s.io/rbd-csi-nodeplugin createdclusterrolebinding.rbac.authorization.k8s.io/rbd-csi-provisioner-role createdclusterrolebinding.rbac.authorization.k8s.io/rook-ceph-global createdclusterrolebinding.rbac.authorization.k8s.io/rook-ceph-mgr-cluster createdclusterrolebinding.rbac.authorization.k8s.io/rook-ceph-object-bucket createdclusterrolebinding.rbac.authorization.k8s.io/rook-ceph-osd createdclusterrolebinding.rbac.authorization.k8s.io/rook-ceph-system createdclusterrolebinding.rbac.authorization.k8s.io/rook-ceph-system-psp createdclusterrolebinding.rbac.authorization.k8s.io/rook-csi-cephfs-plugin-sa-psp createdclusterrolebinding.rbac.authorization.k8s.io/rook-csi-cephfs-provisioner-sa-psp createdclusterrolebinding.rbac.authorization.k8s.io/rook-csi-rbd-plugin-sa-psp createdclusterrolebinding.rbac.authorization.k8s.io/rook-csi-rbd-provisioner-sa-psp createdWarning: policy/v1beta1 PodSecurityPolicy is deprecated in v1.21+, unavailable in v1.25+podsecuritypolicy.policy/00-rook-privileged createdrole.rbac.authorization.k8s.io/cephfs-external-provisioner-cfg createdrole.rbac.authorization.k8s.io/rbd-csi-nodeplugin createdrole.rbac.authorization.k8s.io/rbd-external-provisioner-cfg createdrole.rbac.authorization.k8s.io/rook-ceph-cmd-reporter createdrole.rbac.authorization.k8s.io/rook-ceph-mgr createdrole.rbac.authorization.k8s.io/rook-ceph-osd createdrole.rbac.authorization.k8s.io/rook-ceph-purge-osd createdrole.rbac.authorization.k8s.io/rook-ceph-system createdrolebinding.rbac.authorization.k8s.io/cephfs-csi-provisioner-role-cfg createdrolebinding.rbac.authorization.k8s.io/rbd-csi-nodeplugin-role-cfg createdrolebinding.rbac.authorization.k8s.io/rbd-csi-provisioner-role-cfg createdrolebinding.rbac.authorization.k8s.io/rook-ceph-cluster-mgmt createdrolebinding.rbac.authorization.k8s.io/rook-ceph-cmd-reporter createdrolebinding.rbac.authorization.k8s.io/rook-ceph-cmd-reporter-psp createdrolebinding.rbac.authorization.k8s.io/rook-ceph-default-psp createdrolebinding.rbac.authorization.k8s.io/rook-ceph-mgr createdrolebinding.rbac.authorization.k8s.io/rook-ceph-mgr-psp createdrolebinding.rbac.authorization.k8s.io/rook-ceph-mgr-system createdrolebinding.rbac.authorization.k8s.io/rook-ceph-osd createdrolebinding.rbac.authorization.k8s.io/rook-ceph-osd-psp createdrolebinding.rbac.authorization.k8s.io/rook-ceph-purge-osd createdrolebinding.rbac.authorization.k8s.io/rook-ceph-system createdserviceaccount/rook-ceph-cmd-reporter createdserviceaccount/rook-ceph-mgr createdserviceaccount/rook-ceph-osd createdserviceaccount/rook-ceph-purge-osd createdserviceaccount/rook-ceph-system createdserviceaccount/rook-csi-cephfs-plugin-sa createdserviceaccount/rook-csi-cephfs-provisioner-sa createdserviceaccount/rook-csi-rbd-plugin-sa createdserviceaccount/rook-csi-rbd-provisioner-sa created
3.6.4.3、创立rook operator控制器

依赖于rook/ceph:v1.8.7镜像,此镜像国内网络能够失常拉取。然而也默认依赖CSI相干的镜像,须要拜访谷歌镜像仓库。

#以后门路:rook/deploy/exampleskubectl apply -f operator.yaml
  • 如果无奈拉取谷歌镜像,请批改相干依赖镜像仓库地址
ROOK_CSI_ATTACHER_IMAGE: "willdockerhub/csi-attacher:v3.4.0"ROOK_CSI_REGISTRAR_IMAGE: "willdockerhub/csi-node-driver-registrar:v2.5.0"ROOK_CSI_PROVISIONER_IMAGE: "willdockerhub/csi-provisioner:v3.1.0"ROOK_CSI_RESIZER_IMAGE: "willdockerhub/csi-resizer:v1.4.0"ROOK_CSI_SNAPSHOTTER_IMAGE: "willdockerhub/csi-snapshotter:v5.0.1"ROOK_CSI_CEPH_IMAGE: "willdockerhub/cephcsi:v3.5.1"ROOK_CSIADDONS_IMAGE: "willdockerhub/k8s-sidecar:v0.2.1"CSI_VOLUME_REPLICATION_IMAGE: "willdockerhub/volumereplication-operator:v0.3.0"
  • 批改过镜像后的operator.yaml文件内容
################################################################################################################## The deployment for the rook operator# Contains the common settings for most Kubernetes deployments.# For example, to create the rook-ceph cluster:#   kubectl create -f crds.yaml -f common.yaml -f operator.yaml#   kubectl create -f cluster.yaml## Also see other operator sample files for variations of operator.yaml:# - operator-openshift.yaml: Common settings for running in OpenShift################################################################################################################ Rook Ceph Operator Config ConfigMap# Use this ConfigMap to override Rook-Ceph Operator configurations.# NOTE! Precedence will be given to this config if the same Env Var config also exists in the#       Operator Deployment.# To move a configuration(s) from the Operator Deployment to this ConfigMap, add the config# here. It is recommended to then remove it from the Deployment to eliminate any future confusion.kind: ConfigMapapiVersion: v1metadata:  name: rook-ceph-operator-config  # should be in the namespace of the operator  namespace: rook-ceph # namespace:operatordata:  # The logging level for the operator: ERROR | WARNING | INFO | DEBUG  ROOK_LOG_LEVEL: "INFO"  # Enable the CSI driver.  # To run the non-default version of the CSI driver, see the override-able image properties in operator.yaml  ROOK_CSI_ENABLE_CEPHFS: "true"  # Enable the default version of the CSI RBD driver. To start another version of the CSI driver, see image properties below.  ROOK_CSI_ENABLE_RBD: "true"  ROOK_CSI_ENABLE_GRPC_METRICS: "false"  # Set to true to enable host networking for CSI CephFS and RBD nodeplugins. This may be necessary  # in some network configurations where the SDN does not provide access to an external cluster or  # there is significant drop in read/write performance.  # CSI_ENABLE_HOST_NETWORK: "true"  # Set logging level for csi containers.  # Supported values from 0 to 5. 0 for general useful logs, 5 for trace level verbosity.  # CSI_LOG_LEVEL: "0"  # Set replicas for csi provisioner deployment.  CSI_PROVISIONER_REPLICAS: "2"  # OMAP generator will generate the omap mapping between the PV name and the RBD image.  # CSI_ENABLE_OMAP_GENERATOR need to be enabled when we are using rbd mirroring feature.  # By default OMAP generator sidecar is deployed with CSI provisioner pod, to disable  # it set it to false.  # CSI_ENABLE_OMAP_GENERATOR: "false"  # set to false to disable deployment of snapshotter container in CephFS provisioner pod.  CSI_ENABLE_CEPHFS_SNAPSHOTTER: "true"  # set to false to disable deployment of snapshotter container in RBD provisioner pod.  CSI_ENABLE_RBD_SNAPSHOTTER: "true"  # Enable cephfs kernel driver instead of ceph-fuse.  # If you disable the kernel client, your application may be disrupted during upgrade.  # See the upgrade guide: https://rook.io/docs/rook/latest/ceph-upgrade.html  # NOTE! cephfs quota is not supported in kernel version < 4.17  CSI_FORCE_CEPHFS_KERNEL_CLIENT: "true"  # (Optional) policy for modifying a volume's ownership or permissions when the RBD PVC is being mounted.  # supported values are documented at https://kubernetes-csi.github.io/docs/support-fsgroup.html  CSI_RBD_FSGROUPPOLICY: "ReadWriteOnceWithFSType"  # (Optional) policy for modifying a volume's ownership or permissions when the CephFS PVC is being mounted.  # supported values are documented at https://kubernetes-csi.github.io/docs/support-fsgroup.html  CSI_CEPHFS_FSGROUPPOLICY: "ReadWriteOnceWithFSType"  # (Optional) Allow starting unsupported ceph-csi image  ROOK_CSI_ALLOW_UNSUPPORTED_VERSION: "false"  # (Optional) control the host mount of /etc/selinux for csi plugin pods.  CSI_PLUGIN_ENABLE_SELINUX_HOST_MOUNT: "false"  # The default version of CSI supported by Rook will be started. To change the version  # of the CSI driver to something other than what is officially supported, change  # these images to the desired release of the CSI driver.  # ROOK_CSI_CEPH_IMAGE: "quay.io/cephcsi/cephcsi:v3.5.1"  # ROOK_CSI_REGISTRAR_IMAGE: "k8s.gcr.io/sig-storage/csi-node-driver-registrar:v2.5.0"  # ROOK_CSI_RESIZER_IMAGE: "k8s.gcr.io/sig-storage/csi-resizer:v1.4.0"  # ROOK_CSI_PROVISIONER_IMAGE: "k8s.gcr.io/sig-storage/csi-provisioner:v3.1.0"  # ROOK_CSI_SNAPSHOTTER_IMAGE: "k8s.gcr.io/sig-storage/csi-snapshotter:v5.0.1"  # ROOK_CSI_ATTACHER_IMAGE: "k8s.gcr.io/sig-storage/csi-attacher:v3.4.0"      ROOK_CSI_ATTACHER_IMAGE: "willdockerhub/csi-attacher:v3.4.0"  ROOK_CSI_REGISTRAR_IMAGE: "willdockerhub/csi-node-driver-registrar:v2.5.0"  ROOK_CSI_PROVISIONER_IMAGE: "willdockerhub/csi-provisioner:v3.1.0"  ROOK_CSI_RESIZER_IMAGE: "willdockerhub/csi-resizer:v1.4.0"  ROOK_CSI_SNAPSHOTTER_IMAGE: "willdockerhub/csi-snapshotter:v5.0.1"    ROOK_CSI_CEPH_IMAGE: "willdockerhub/cephcsi:v3.5.1"  ROOK_CSIADDONS_IMAGE: "willdockerhub/k8s-sidecar:v0.2.1"  CSI_VOLUME_REPLICATION_IMAGE: "willdockerhub/volumereplication-operator:v0.3.0"  # (Optional) set user created priorityclassName for csi plugin pods.  # CSI_PLUGIN_PRIORITY_CLASSNAME: "system-node-critical"  # (Optional) set user created priorityclassName for csi provisioner pods.  # CSI_PROVISIONER_PRIORITY_CLASSNAME: "system-cluster-critical"  # CSI CephFS plugin daemonset update strategy, supported values are OnDelete and RollingUpdate.  # Default value is RollingUpdate.  # CSI_CEPHFS_PLUGIN_UPDATE_STRATEGY: "OnDelete"  # CSI RBD plugin daemonset update strategy, supported values are OnDelete and RollingUpdate.  # Default value is RollingUpdate.  # CSI_RBD_PLUGIN_UPDATE_STRATEGY: "OnDelete"  # kubelet directory path, if kubelet configured to use other than /var/lib/kubelet path.  # ROOK_CSI_KUBELET_DIR_PATH: "/var/lib/kubelet"  # Labels to add to the CSI CephFS Deployments and DaemonSets Pods.  # ROOK_CSI_CEPHFS_POD_LABELS: "key1=value1,key2=value2"  # Labels to add to the CSI RBD Deployments and DaemonSets Pods.  # ROOK_CSI_RBD_POD_LABELS: "key1=value1,key2=value2"  # (Optional) CephCSI provisioner NodeAffinity(applied to both CephFS and RBD provisioner).  # CSI_PROVISIONER_NODE_AFFINITY: "role=storage-node; storage=rook, ceph"  # (Optional) CephCSI provisioner tolerations list(applied to both CephFS and RBD provisioner).  # Put here list of taints you want to tolerate in YAML format.  # CSI provisioner would be best to start on the same nodes as other ceph daemons.  # CSI_PROVISIONER_TOLERATIONS: |  #   - effect: NoSchedule  #     key: node-role.kubernetes.io/controlplane  #     operator: Exists  #   - effect: NoExecute  #     key: node-role.kubernetes.io/etcd  #     operator: Exists  # (Optional) CephCSI plugin NodeAffinity(applied to both CephFS and RBD plugin).  # CSI_PLUGIN_NODE_AFFINITY: "role=storage-node; storage=rook, ceph"  # (Optional) CephCSI plugin tolerations list(applied to both CephFS and RBD plugin).  # Put here list of taints you want to tolerate in YAML format.  # CSI plugins need to be started on all the nodes where the clients need to mount the storage.  # CSI_PLUGIN_TOLERATIONS: |  #   - effect: NoSchedule  #     key: node-role.kubernetes.io/controlplane  #     operator: Exists  #   - effect: NoExecute  #     key: node-role.kubernetes.io/etcd  #     operator: Exists  # (Optional) CephCSI RBD provisioner NodeAffinity(if specified, overrides CSI_PROVISIONER_NODE_AFFINITY).  # CSI_RBD_PROVISIONER_NODE_AFFINITY: "role=rbd-node"  # (Optional) CephCSI RBD provisioner tolerations list(if specified, overrides CSI_PROVISIONER_TOLERATIONS).  # Put here list of taints you want to tolerate in YAML format.  # CSI provisioner would be best to start on the same nodes as other ceph daemons.  # CSI_RBD_PROVISIONER_TOLERATIONS: |  #   - key: node.rook.io/rbd  #     operator: Exists  # (Optional) CephCSI RBD plugin NodeAffinity(if specified, overrides CSI_PLUGIN_NODE_AFFINITY).  # CSI_RBD_PLUGIN_NODE_AFFINITY: "role=rbd-node"  # (Optional) CephCSI RBD plugin tolerations list(if specified, overrides CSI_PLUGIN_TOLERATIONS).  # Put here list of taints you want to tolerate in YAML format.  # CSI plugins need to be started on all the nodes where the clients need to mount the storage.  # CSI_RBD_PLUGIN_TOLERATIONS: |  #   - key: node.rook.io/rbd  #     operator: Exists  # (Optional) CephCSI CephFS provisioner NodeAffinity(if specified, overrides CSI_PROVISIONER_NODE_AFFINITY).  # CSI_CEPHFS_PROVISIONER_NODE_AFFINITY: "role=cephfs-node"  # (Optional) CephCSI CephFS provisioner tolerations list(if specified, overrides CSI_PROVISIONER_TOLERATIONS).  # Put here list of taints you want to tolerate in YAML format.  # CSI provisioner would be best to start on the same nodes as other ceph daemons.  # CSI_CEPHFS_PROVISIONER_TOLERATIONS: |  #   - key: node.rook.io/cephfs  #     operator: Exists  # (Optional) CephCSI CephFS plugin NodeAffinity(if specified, overrides CSI_PLUGIN_NODE_AFFINITY).  # CSI_CEPHFS_PLUGIN_NODE_AFFINITY: "role=cephfs-node"  # (Optional) CephCSI CephFS plugin tolerations list(if specified, overrides CSI_PLUGIN_TOLERATIONS).  # Put here list of taints you want to tolerate in YAML format.  # CSI plugins need to be started on all the nodes where the clients need to mount the storage.  # CSI_CEPHFS_PLUGIN_TOLERATIONS: |  #   - key: node.rook.io/cephfs  #     operator: Exists  # (Optional) CEPH CSI RBD provisioner resource requirement list, Put here list of resource  # requests and limits you want to apply for provisioner pod  # CSI_RBD_PROVISIONER_RESOURCE: |  #  - name : csi-provisioner  #    resource:  #      requests:  #        memory: 128Mi  #        cpu: 100m  #      limits:  #        memory: 256Mi  #        cpu: 200m  #  - name : csi-resizer  #    resource:  #      requests:  #        memory: 128Mi  #        cpu: 100m  #      limits:  #        memory: 256Mi  #        cpu: 200m  #  - name : csi-attacher  #    resource:  #      requests:  #        memory: 128Mi  #        cpu: 100m  #      limits:  #        memory: 256Mi  #        cpu: 200m  #  - name : csi-snapshotter  #    resource:  #      requests:  #        memory: 128Mi  #        cpu: 100m  #      limits:  #        memory: 256Mi  #        cpu: 200m  #  - name : csi-rbdplugin  #    resource:  #      requests:  #        memory: 512Mi  #        cpu: 250m  #      limits:  #        memory: 1Gi  #        cpu: 500m  #  - name : liveness-prometheus  #    resource:  #      requests:  #        memory: 128Mi  #        cpu: 50m  #      limits:  #        memory: 256Mi  #        cpu: 100m  # (Optional) CEPH CSI RBD plugin resource requirement list, Put here list of resource  # requests and limits you want to apply for plugin pod  # CSI_RBD_PLUGIN_RESOURCE: |  #  - name : driver-registrar  #    resource:  #      requests:  #        memory: 128Mi  #        cpu: 50m  #      limits:  #        memory: 256Mi  #        cpu: 100m  #  - name : csi-rbdplugin  #    resource:  #      requests:  #        memory: 512Mi  #        cpu: 250m  #      limits:  #        memory: 1Gi  #        cpu: 500m  #  - name : liveness-prometheus  #    resource:  #      requests:  #        memory: 128Mi  #        cpu: 50m  #      limits:  #        memory: 256Mi  #        cpu: 100m  # (Optional) CEPH CSI CephFS provisioner resource requirement list, Put here list of resource  # requests and limits you want to apply for provisioner pod  # CSI_CEPHFS_PROVISIONER_RESOURCE: |  #  - name : csi-provisioner  #    resource:  #      requests:  #        memory: 128Mi  #        cpu: 100m  #      limits:  #        memory: 256Mi  #        cpu: 200m  #  - name : csi-resizer  #    resource:  #      requests:  #        memory: 128Mi  #        cpu: 100m  #      limits:  #        memory: 256Mi  #        cpu: 200m  #  - name : csi-attacher  #    resource:  #      requests:  #        memory: 128Mi  #        cpu: 100m  #      limits:  #        memory: 256Mi  #        cpu: 200m  #  - name : csi-cephfsplugin  #    resource:  #      requests:  #        memory: 512Mi  #        cpu: 250m  #      limits:  #        memory: 1Gi  #        cpu: 500m  #  - name : liveness-prometheus  #    resource:  #      requests:  #        memory: 128Mi  #        cpu: 50m  #      limits:  #        memory: 256Mi  #        cpu: 100m  # (Optional) CEPH CSI CephFS plugin resource requirement list, Put here list of resource  # requests and limits you want to apply for plugin pod  # CSI_CEPHFS_PLUGIN_RESOURCE: |  #  - name : driver-registrar  #    resource:  #      requests:  #        memory: 128Mi  #        cpu: 50m  #      limits:  #        memory: 256Mi  #        cpu: 100m  #  - name : csi-cephfsplugin  #    resource:  #      requests:  #        memory: 512Mi  #        cpu: 250m  #      limits:  #        memory: 1Gi  #        cpu: 500m  #  - name : liveness-prometheus  #    resource:  #      requests:  #        memory: 128Mi  #        cpu: 50m  #      limits:  #        memory: 256Mi  #        cpu: 100m  # Configure CSI CSI Ceph FS grpc and liveness metrics port  # CSI_CEPHFS_GRPC_METRICS_PORT: "9091"  # CSI_CEPHFS_LIVENESS_METRICS_PORT: "9081"  # Configure CSI RBD grpc and liveness metrics port  # CSI_RBD_GRPC_METRICS_PORT: "9090"  # CSI_RBD_LIVENESS_METRICS_PORT: "9080"  # CSIADDONS_PORT: "9070"  # Whether the OBC provisioner should watch on the operator namespace or not, if not the namespace of the cluster will be used  ROOK_OBC_WATCH_OPERATOR_NAMESPACE: "true"  # Whether to start the discovery daemon to watch for raw storage devices on nodes in the cluster.  # This daemon does not need to run if you are only going to create your OSDs based on StorageClassDeviceSets with PVCs.  ROOK_ENABLE_DISCOVERY_DAEMON: "false"  # The timeout value (in seconds) of Ceph commands. It should be >= 1. If this variable is not set or is an invalid value, it's default to 15.  ROOK_CEPH_COMMANDS_TIMEOUT_SECONDS: "15"  # Enable the volume replication controller.  # Before enabling, ensure the Volume Replication CRDs are created.  # See https://rook.io/docs/rook/latest/ceph-csi-drivers.html#rbd-mirroring  CSI_ENABLE_VOLUME_REPLICATION: "false"  # CSI_VOLUME_REPLICATION_IMAGE: "quay.io/csiaddons/volumereplication-operator:v0.3.0"  # Enable the csi addons sidecar.  CSI_ENABLE_CSIADDONS: "false"  # ROOK_CSIADDONS_IMAGE: "quay.io/csiaddons/k8s-sidecar:v0.2.1"---# OLM: BEGIN OPERATOR DEPLOYMENTapiVersion: apps/v1kind: Deploymentmetadata:  name: rook-ceph-operator  namespace: rook-ceph # namespace:operator  labels:    operator: rook    storage-backend: ceph    app.kubernetes.io/name: rook-ceph    app.kubernetes.io/instance: rook-ceph    app.kubernetes.io/component: rook-ceph-operator    app.kubernetes.io/part-of: rook-ceph-operatorspec:  selector:    matchLabels:      app: rook-ceph-operator  replicas: 1  template:    metadata:      labels:        app: rook-ceph-operator    spec:      serviceAccountName: rook-ceph-system      containers:        - name: rook-ceph-operator          image: rook/ceph:v1.8.7          args: ["ceph", "operator"]          securityContext:            runAsNonRoot: true            runAsUser: 2016            runAsGroup: 2016          volumeMounts:            - mountPath: /var/lib/rook              name: rook-config            - mountPath: /etc/ceph              name: default-config-dir            - mountPath: /etc/webhook              name: webhook-cert          ports:            - containerPort: 9443              name: https-webhook              protocol: TCP          env:            # If the operator should only watch for cluster CRDs in the same namespace, set this to "true".            # If this is not set to true, the operator will watch for cluster CRDs in all namespaces.            - name: ROOK_CURRENT_NAMESPACE_ONLY              value: "false"            # Rook Discover toleration. Will tolerate all taints with all keys.            # Choose between NoSchedule, PreferNoSchedule and NoExecute:            # - name: DISCOVER_TOLERATION            #   value: "NoSchedule"            # (Optional) Rook Discover toleration key. Set this to the key of the taint you want to tolerate            # - name: DISCOVER_TOLERATION_KEY            #   value: "<KeyOfTheTaintToTolerate>"            # (Optional) Rook Discover tolerations list. Put here list of taints you want to tolerate in YAML format.            # - name: DISCOVER_TOLERATIONS            #   value: |            #     - effect: NoSchedule            #       key: node-role.kubernetes.io/controlplane            #       operator: Exists            #     - effect: NoExecute            #       key: node-role.kubernetes.io/etcd            #       operator: Exists            # (Optional) Rook Discover priority class name to set on the pod(s)            # - name: DISCOVER_PRIORITY_CLASS_NAME            #   value: "<PriorityClassName>"            # (Optional) Discover Agent NodeAffinity.            # - name: DISCOVER_AGENT_NODE_AFFINITY            #   value: "role=storage-node; storage=rook, ceph"            # (Optional) Discover Agent Pod Labels.            # - name: DISCOVER_AGENT_POD_LABELS            #   value: "key1=value1,key2=value2"            # The duration between discovering devices in the rook-discover daemonset.            - name: ROOK_DISCOVER_DEVICES_INTERVAL              value: "60m"            # Whether to start pods as privileged that mount a host path, which includes the Ceph mon and osd pods.            # Set this to true if SELinux is enabled (e.g. OpenShift) to workaround the anyuid issues.            # For more details see https://github.com/rook/rook/issues/1314#issuecomment-355799641            - name: ROOK_HOSTPATH_REQUIRES_PRIVILEGED              value: "false"            # In some situations SELinux relabelling breaks (times out) on large filesystems, and doesn't work with cephfs ReadWriteMany volumes (last relabel wins).            # Disable it here if you have similar issues.            # For more details see https://github.com/rook/rook/issues/2417            - name: ROOK_ENABLE_SELINUX_RELABELING              value: "true"            # In large volumes it will take some time to chown all the files. Disable it here if you have performance issues.            # For more details see https://github.com/rook/rook/issues/2254            - name: ROOK_ENABLE_FSGROUP              value: "true"            # Disable automatic orchestration when new devices are discovered            - name: ROOK_DISABLE_DEVICE_HOTPLUG              value: "false"            # Provide customised regex as the values using comma. For eg. regex for rbd based volume, value will be like "(?i)rbd[0-9]+".            # In case of more than one regex, use comma to separate between them.            # Default regex will be "(?i)dm-[0-9]+,(?i)rbd[0-9]+,(?i)nbd[0-9]+"            # Add regex expression after putting a comma to blacklist a disk            # If value is empty, the default regex will be used.            - name: DISCOVER_DAEMON_UDEV_BLACKLIST              value: "(?i)dm-[0-9]+,(?i)rbd[0-9]+,(?i)nbd[0-9]+"            # Time to wait until the node controller will move Rook pods to other            # nodes after detecting an unreachable node.            # Pods affected by this setting are:            # mgr, rbd, mds, rgw, nfs, PVC based mons and osds, and ceph toolbox            # The value used in this variable replaces the default value of 300 secs            # added automatically by k8s as Toleration for            # <node.kubernetes.io/unreachable>            # The total amount of time to reschedule Rook pods in healthy nodes            # before detecting a <not ready node> condition will be the sum of:            #  --> node-monitor-grace-period: 40 seconds (k8s kube-controller-manager flag)            #  --> ROOK_UNREACHABLE_NODE_TOLERATION_SECONDS: 5 seconds            - name: ROOK_UNREACHABLE_NODE_TOLERATION_SECONDS              value: "5"            # The name of the node to pass with the downward API            - name: NODE_NAME              valueFrom:                fieldRef:                  fieldPath: spec.nodeName            # The pod name to pass with the downward API            - name: POD_NAME              valueFrom:                fieldRef:                  fieldPath: metadata.name            # The pod namespace to pass with the downward API            - name: POD_NAMESPACE              valueFrom:                fieldRef:                  fieldPath: metadata.namespace          # Recommended resource requests and limits, if desired          #resources:          #  limits:          #    cpu: 500m          #    memory: 256Mi          #  requests:          #    cpu: 100m          #    memory: 128Mi          #  Uncomment it to run lib bucket provisioner in multithreaded mode          #- name: LIB_BUCKET_PROVISIONER_THREADS          #  value: "5"      # Uncomment it to run rook operator on the host network      #hostNetwork: true      volumes:        - name: rook-config          emptyDir: {}        - name: default-config-dir          emptyDir: {}        - name: webhook-cert          emptyDir: {}# OLM: END OPERATOR DEPLOYMENT
  • 执行日志
[root@vm-k8s-master examples]# kubectl apply -f operator.yamlconfigmap/rook-ceph-operator-config createddeployment.apps/rook-ceph-operator created
3.6.4.4、创立rook-ceph cluster
#以后门路:rook/deploy/exampleskubectl apply -f cluster.yaml
  • 查看pod状态
#查看pod状态[root@vm-k8s-master examples]# kubectl get pods -n rook-cephNAME                                            READY   STATUS              RESTARTS   AGEcsi-cephfsplugin-2qr5s                          2/3     ImagePullBackOff    0          5m6scsi-cephfsplugin-mwzc6                          2/3     ErrImagePull        0          5m6scsi-cephfsplugin-provisioner-5dc9cbcc87-gpbbg   2/6     ErrImagePull        0          5m6scsi-cephfsplugin-provisioner-5dc9cbcc87-zjflm   0/6     ContainerCreating   0          5m6scsi-cephfsplugin-qlqb5                          0/3     ErrImagePull        0          5m6scsi-rbdplugin-4hwfg                             2/3     ErrImagePull        0          5m6scsi-rbdplugin-8hzz4                             2/3     ImagePullBackOff    0          5m6scsi-rbdplugin-f6d6z                             2/3     ImagePullBackOff    0          5m6scsi-rbdplugin-provisioner-58f584754c-b57xb      2/6     ErrImagePull        0          5m6scsi-rbdplugin-provisioner-58f584754c-t87ts      0/6     ContainerCreating   0          5m6srook-ceph-mon-a-7dd7f95f87-mzrbt                1/1     Running             0          5m52srook-ceph-mon-b-b7645dd5b-ls7nm                 1/1     Running             0          4m56srook-ceph-mon-c-5dc96ff9c-zgq6x                 0/1     Init:0/2            0          2m35srook-ceph-operator-846695c777-jzg4z             1/1     Running             0          15m#[root@vm-k8s-master examples]# kubectl describe pod -n rook-ceph csi-cephfsplugin-2qr5sEvents:  Type     Reason     Age                    From               Message  ----     ------     ----                   ----               -------  Normal   Scheduled  9m45s                  default-scheduler  Successfully assigned rook-ceph/csi-cephfsplugin-2qr5s to vm-k8s-worker02  Normal   Pulled     9m14s                  kubelet            Container image "quay.io/cephcsi/cephcsi:v3.5.1" already present on machine  Normal   Created    9m14s                  kubelet            Created container liveness-prometheus  Normal   Started    9m14s                  kubelet            Started container liveness-prometheus  Normal   Pulled     9m14s                  kubelet            Container image "quay.io/cephcsi/cephcsi:v3.5.1" already present on machine  Normal   Created    9m14s                  kubelet            Created container csi-cephfsplugin  Normal   Started    9m14s                  kubelet            Started container csi-cephfsplugin  Normal   Pulling    7m33s (x3 over 9m44s)  kubelet            Pulling image "k8s.gcr.io/sig-storage/csi-node-driver-registrar:v2.5.0"  Warning  Failed     6m44s (x3 over 9m14s)  kubelet            Failed to pull image "k8s.gcr.io/sig-storage/csi-node-driver-registrar:v2.5.0": rpc error: code = Unknown desc = Error response from daemon: Get "https://k8s.gcr.io/v2/": net/http: request canceled while waiting for connection (Client.Timeout exceeded while awaiting headers)  Warning  Failed     6m44s (x3 over 9m14s)  kubelet            Error: ErrImagePull  Warning  Failed     6m17s (x5 over 9m14s)  kubelet            Error: ImagePullBackOff  Normal   BackOff    4m33s (x8 over 9m14s)  kubelet            Back-off pulling image "k8s.gcr.io/sig-storage/csi-node-driver-registrar:v2.5.0"
3.6.4.5、创立存储类

创立存储类,为k8s集群提供动态创建pv的能力

#以后门路:rook/deploy/examples/csi/rbdkubectl apply -f storageclass.yaml
[root@vm-k8s-master rbd]# kubectl get scNAME              PROVISIONER                  RECLAIMPOLICY   VOLUMEBINDINGMODE   ALLOWVOLUMEEXPANSION   AGErook-ceph-block   rook-ceph.rbd.csi.ceph.com   Delete          Immediate           true                   65s
  • storageclass.yaml资源文件内容
apiVersion: ceph.rook.io/v1kind: CephBlockPoolmetadata:  name: replicapool  namespace: rook-ceph # namespace:clusterspec:  failureDomain: host  replicated:    size: 3    # Disallow setting pool with replica 1, this could lead to data loss without recovery.    # Make sure you're *ABSOLUTELY CERTAIN* that is what you want    requireSafeReplicaSize: true    # gives a hint (%) to Ceph in terms of expected consumption of the total cluster capacity of a given pool    # for more info: https://docs.ceph.com/docs/master/rados/operations/placement-groups/#specifying-expected-pool-size    #targetSizeRatio: .5---apiVersion: storage.k8s.io/v1kind: StorageClassmetadata:  name: rook-ceph-block# Change "rook-ceph" provisioner prefix to match the operator namespace if neededprovisioner: rook-ceph.rbd.csi.ceph.comparameters:  # clusterID is the namespace where the rook cluster is running  # If you change this namespace, also change the namespace below where the secret namespaces are defined  clusterID: rook-ceph # namespace:cluster  # If you want to use erasure coded pool with RBD, you need to create  # two pools. one erasure coded and one replicated.  # You need to specify the replicated pool here in the `pool` parameter, it is  # used for the metadata of the images.  # The erasure coded pool must be set as the `dataPool` parameter below.  #dataPool: ec-data-pool  pool: replicapool  # (optional) mapOptions is a comma-separated list of map options.  # For krbd options refer  # https://docs.ceph.com/docs/master/man/8/rbd/#kernel-rbd-krbd-options  # For nbd options refer  # https://docs.ceph.com/docs/master/man/8/rbd-nbd/#options  # mapOptions: lock_on_read,queue_depth=1024  # (optional) unmapOptions is a comma-separated list of unmap options.  # For krbd options refer  # https://docs.ceph.com/docs/master/man/8/rbd/#kernel-rbd-krbd-options  # For nbd options refer  # https://docs.ceph.com/docs/master/man/8/rbd-nbd/#options  # unmapOptions: force  # RBD image format. Defaults to "2".  imageFormat: "2"  # RBD image features. Available for imageFormat: "2". CSI RBD currently supports only `layering` feature.  imageFeatures: layering  # The secrets contain Ceph admin credentials. These are generated automatically by the operator  # in the same namespace as the cluster.  csi.storage.k8s.io/provisioner-secret-name: rook-csi-rbd-provisioner  csi.storage.k8s.io/provisioner-secret-namespace: rook-ceph # namespace:cluster  csi.storage.k8s.io/controller-expand-secret-name: rook-csi-rbd-provisioner  csi.storage.k8s.io/controller-expand-secret-namespace: rook-ceph # namespace:cluster  csi.storage.k8s.io/node-stage-secret-name: rook-csi-rbd-node  csi.storage.k8s.io/node-stage-secret-namespace: rook-ceph # namespace:cluster  # Specify the filesystem type of the volume. If not specified, csi-provisioner  # will set default as `ext4`. Note that `xfs` is not recommended due to potential deadlock  # in hyperconverged settings where the volume is mounted on the same node as the osds.  csi.storage.k8s.io/fstype: ext4# uncomment the following to use rbd-nbd as mounter on supported nodes# **IMPORTANT**: CephCSI v3.4.0 onwards a volume healer functionality is added to reattach# the PVC to application pod if nodeplugin pod restart.# Its still in Alpha support. Therefore, this option is not recommended for production use.#mounter: rbd-nbdallowVolumeExpansion: truereclaimPolicy: Delete
3.6.4.6、创立rook官网提供的mysql测试服务

rook官网提供的mysql测试服务,依赖于storageclass创立的pv长久化

#以后门路:rook/deploy/exampleskubectl apply -f mysql.yaml
[root@vm-k8s-master examples]# kubectl get pvcNAME             STATUS   VOLUME                                     CAPACITY   ACCESS MODES   STORAGECLASS      AGEmysql-pv-claim   Bound    pvc-effe80d6-a1ae-42a7-b112-d11e50c06fb8   20Gi       RWO            rook-ceph-block   4m27s
  • mysql.yaml资源文件内容
apiVersion: v1kind: Servicemetadata:  name: wordpress-mysql  labels:    app: wordpressspec:  ports:    - port: 3306  selector:    app: wordpress    tier: mysql  clusterIP: None---apiVersion: v1kind: PersistentVolumeClaimmetadata:  name: mysql-pv-claim  labels:    app: wordpressspec:  storageClassName: rook-ceph-block  accessModes:    - ReadWriteOnce  resources:    requests:      storage: 20Gi---apiVersion: apps/v1kind: Deploymentmetadata:  name: wordpress-mysql  labels:    app: wordpress    tier: mysqlspec:  selector:    matchLabels:      app: wordpress      tier: mysql  strategy:    type: Recreate  template:    metadata:      labels:        app: wordpress        tier: mysql    spec:      containers:        - image: mysql:5.6          name: mysql          env:            - name: MYSQL_ROOT_PASSWORD              value: changeme          ports:            - containerPort: 3306              name: mysql          volumeMounts:            - name: mysql-persistent-storage              mountPath: /var/lib/mysql      volumes:        - name: mysql-persistent-storage          persistentVolumeClaim:            claimName: mysql-pv-claim
3.6.4.7、创立toolbox

默认启动的Ceph集群,是开启Ceph认证的,这样你登陆Ceph组件所在的Pod里,是没法去获取集群状态,以及执行CLI命令,这时须要部署Ceph toolbox。

#以后门路:rook/deploy/exampleskubectl apply -f toolbox.yaml
3.6.4.8、创立rook官网提供的wordpress测试服务

rook官网提供的wordpress测试服务,依赖于storageclass创立的pv长久化

#以后门路:rook/deploy/exampleskubectl apply -f wordpress.yaml
[root@vm-k8s-master examples]# kubectl get pvcNAME             STATUS   VOLUME                                     CAPACITY   ACCESS MODES   STORAGECLASS      AGEmysql-pv-claim   Bound    pvc-effe80d6-a1ae-42a7-b112-d11e50c06fb8   20Gi       RWO            rook-ceph-block   5m49swp-pv-claim      Bound    pvc-240ea773-ace2-4a9a-99ff-89f52bbd8084   20Gi       RWO            rook-ceph-block   7s

阐明:这里的pv会主动创立,当提交了蕴含StorageClass字段的PVC之后,Kubernetes 就会依据这个StorageClass创立出对应的PV,这是用到的是Dynamic Provisioning机制来动态创建pv。

  • 拜访wordpress
[root@vm-k8s-master examples]# kubectl get svcNAME              TYPE           CLUSTER-IP    EXTERNAL-IP   PORT(S)        AGEkubernetes        ClusterIP      10.1.0.1      <none>        443/TCP        26hwordpress         LoadBalancer   10.1.43.219   <pending>     80:31225/TCP   14mwordpress-mysql   ClusterIP      None          <none>        3306/TCP       20m