学习线程池过程中产生的问题
- 线程池的提交过程是怎么样的
- 线程池是如何复用的
- Runnable和Callable提交有什么区别
- 如何辨别外围线程和非核心线程
- 存活工夫达到时如何敞开线程
线程池的提交
线程池的提交有3种形式:
<T> Future<T> submit(Callable<T> task);<T> Future<T> submit(Runnable task, T result);Future<?> submit(Runnable task);
能够看到别离是2个Runnable和1个Callable的提交,那为什么有两个Runnable的提交呢。通常咱们都是认为Runnable和Callable的区别是Callable是能够返回一个后果。其实Runnable也是能够返回后果的,依据参数T result能够看出T result就是返回后果,如果不传,那么默认返回NULL。
接下来进入submit办法
public <T> Future<T> submit(Callable<T> task) { if (task == null) throw new NullPointerException(); RunnableFuture<T> ftask = newTaskFor(task); execute(ftask); return ftask;}public <T> Future<T> submit(Runnable task, T result) { if (task == null) throw new NullPointerException(); RunnableFuture<T> ftask = newTaskFor(task, result); execute(ftask); return ftask;}public Future<?> submit(Runnable task) { if (task == null) throw new NullPointerException(); RunnableFuture<Void> ftask = newTaskFor(task, null); execute(ftask); return ftask;}
这三个办法是先调用newTaskFor失去一个RunnableFuture,再提交执行。
protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) { return new FutureTask<T>(runnable, value);}protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) { return new FutureTask<T>(callable);}
newTaskFor内结构的FutureTask就是咱们用来获取执行状态和后果的适配类了。在FutureTask类内,则是对立适配为Callable,只不过Runnable返回NULL或传入的固定值。
咱们再看看ThreadPoolExecutor的执行过程:
public void execute(Runnable command) { if (command == null) throw new NullPointerException(); //1、判断是否在外围线程内,如果是则尝试创立外围线程 int c = ctl.get(); if (workerCountOf(c) < corePoolSize) { if (addWorker(command, true)) return; c = ctl.get(); } //2、超出外围线程数则尝试间接退出队列 if (isRunning(c) && workQueue.offer(command)) { int recheck = ctl.get(); if (! isRunning(recheck) && remove(command)) reject(command); else if (workerCountOf(recheck) == 0) addWorker(null, false); } //3、退出队列失败则尝试创立非核心线程,留神第二个参数,在增加工作前要做检测 //,ture示意检测小于外围线程数,false示意检测小于最大线程数 else if (!addWorker(command, false)) //4、执行回绝策略 reject(command);}
很显著,在提交工作的过程中,最重要的就是addWorker这个办法。
private boolean addWorker(Runnable firstTask, boolean core) { //1、做各种检测,并且尝试CAS线程数,胜利则持续,失败则重试或返回 retry: for (;;) { int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. if (rs >= SHUTDOWN && ! (rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty())) return false; for (;;) { int wc = workerCountOf(c); if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize)) return false; if (compareAndIncrementWorkerCount(c)) break retry; c = ctl.get(); // Re-read ctl if (runStateOf(c) != rs) continue retry; // else CAS failed due to workerCount change; retry inner loop } } boolean workerStarted = false; boolean workerAdded = false; Worker w = null; try { //2、新建Worker来治理工作的执行,并将Worker增加到workers中治理 w = new Worker(firstTask); final Thread t = w.thread; if (t != null) { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { // Recheck while holding lock. // Back out on ThreadFactory failure or if // shut down before lock acquired. int rs = runStateOf(ctl.get()); if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) { if (t.isAlive()) // precheck that t is startable throw new IllegalThreadStateException(); workers.add(w); int s = workers.size(); if (s > largestPoolSize) largestPoolSize = s; workerAdded = true; } } finally { mainLock.unlock(); } if (workerAdded) { //3、终于到执行这一步,间接运行start执行 t.start(); workerStarted = true; } } } finally { if (! workerStarted) addWorkerFailed(w); } return workerStarted;}
后面说到,参数boolean core管制增加外围/非核心线程,然而在该办法中只有判断时用到了core,所以如何辨别外围/非核心线程呢?答案是不辨别,这两兄弟在线程池看起来没有区别,只须要思考线程数和外围数,最大数就能够。
间接运行start,那么队列里的工作怎么办呢?这在Worker外部解决。Worker是一个实现了Runnable的外部类,它的执行逻辑全副在runWorker内:
final void runWorker(Worker w) { Thread wt = Thread.currentThread(); Runnable task = w.firstTask; w.firstTask = null; w.unlock(); // allow interrupts boolean completedAbruptly = true; try { //1、循环获取工作,直到没有工作 while (task != null || (task = getTask()) != null) { w.lock(); // If pool is stopping, ensure thread is interrupted; // if not, ensure thread is not interrupted. This // requires a recheck in second case to deal with // shutdownNow race while clearing interrupt if ((runStateAtLeast(ctl.get(), STOP) || (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP))) && !wt.isInterrupted()) wt.interrupt(); try { //2、前置解决,默认空实现 beforeExecute(wt, task); Throwable thrown = null; try { //3、间接执行run,这样就能够保障不同的逻辑在同一个线程内执行 task.run(); } catch (RuntimeException x) { thrown = x; throw x; } catch (Error x) { thrown = x; throw x; } catch (Throwable x) { thrown = x; throw new Error(x); } finally { //4、后置解决,默认空实现 afterExecute(task, thrown); } } finally { task = null; w.completedTasks++; w.unlock(); } } completedAbruptly = false; } finally { 5、移除Worker processWorkerExit(w, completedAbruptly); }}
咱们能够猜到,getTask就是从队列内获取工作,当获取不到工作,退出循环后,就移除worker。
private Runnable getTask() { boolean timedOut = false; // Did the last poll() time out? for (;;) { int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { decrementWorkerCount(); return null; } int wc = workerCountOf(c); // Are workers subject to culling? boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; if ((wc > maximumPoolSize || (timed && timedOut)) && (wc > 1 || workQueue.isEmpty())) { if (compareAndDecrementWorkerCount(c)) return null; continue; } try { //如果须要判断超时,那么就在keepAliveTime工夫后拉取工作,否则就阻塞拉取工作 Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take(); if (r != null) return r; timedOut = true; } catch (InterruptedException retry) { timedOut = false; } }}
参数timed代表是否须要判断超时,timedOut代表是否超时。如果以后线程数在外围线程数内并且外围线程容许超时,那么timed就是false,这种状况下只有空队列阻塞和获取到工作返回两种状况;而如果是以后线程数超过外围线程,那么也有两种状况,队列有工作间接获取,队列没有工作在keepAliveTime后再获取一次工作,没有工作就完结执行。