Python numpy库的ndarray数据结构应用很不便,这里记录一下如何将其传递给C/C++代码,
间接上答案:
应用到的库:ctypes

C++代码局部(toPython.cpp):

#include <stdio.h>extern "C" void showNdarray(int* data, int rows, int cols) {    for (int i = 0; i < rows; i++) {        for (int j = 0; j < cols; j++) {            printf("data[%d][%d] = %d\n", i,j,data[i * rows + j]);        }    }}

将C++代码编译成动态链接库:
g++ -o topython.so -shared -fPIC toPython.cpp

Python代码局部:

import ctypesimport numpy as np# 加载动静库lcpp = ctypes.cdll.LoadLibrarycpplib = lcpp("./topython.so")def transfer_array_to_cpp() :    data = np.array([[1,2,3,4,5],                     [2,4,6,8,0]])    dataptr = data.ctypes.data_as(ctypes.c_char_p)    rows, cols = data.shape    # 调用C++函数,将ndarray数据传递给C++    cpplib.showNdarray(dataptr, rows, cols)    if __name__ == '__main__' :    transfer_array_to_cpp()

Python代码放在和C++链接库同一个目录下,运行即可:

data[0][0] = 1data[0][1] = 0data[0][2] = 2data[0][3] = 0data[0][4] = 3data[1][0] = 2data[1][1] = 0data[1][2] = 3data[1][3] = 0data[1][4] = 4