分段锁:零碎提供肯定数量的原始锁,依据传入对象的哈希值获取对应的锁并加锁

public class SegmentLock<T> {
private Integer segments = 16;//默认分段数量
private final HashMap<Integer, ReentrantLock> lockMap = new HashMap<>();

public SegmentLock() {

init(null, false);

}

public SegmentLock(Integer counts, boolean fair) {

init(counts, fair);

}

private void init(Integer counts, boolean fair) {

if (counts != null) {  segments = counts;}for (int i = 0; i < segments; i++) {  lockMap.put(i, new ReentrantLock(fair));}

}

public void lock(T key) {

ReentrantLock lock = lockMap.get((key.hashCode()>>>1) % segments);lock.lock();

}

public void unlock(T key) {

ReentrantLock lock = lockMap.get((key.hashCode()>>>1) % segments);lock.unlock();

}
}

哈希锁:上述分段锁的根底上倒退起来的第二种锁策略,目标是实现真正意义上的细粒度锁。每个哈希值不同的对象都能取得本人独立的锁。

public class HashLock<T> {
private boolean isFair = false;
private final SegmentLock<T> segmentLock = new SegmentLock<>();//分段锁
private final ConcurrentHashMap<T, LockInfo> lockMap = new ConcurrentHashMap<>();

public HashLock() {
}

public HashLock(boolean fair) {

isFair = fair;

}

public void lock(T key) {

LockInfo lockInfo;segmentLock.lock(key);try {  lockInfo = lockMap.get(key);  if (lockInfo == null) {    lockInfo = new LockInfo(isFair);    lockMap.put(key, lockInfo);  } else {    lockInfo.count.incrementAndGet();  }} finally {  segmentLock.unlock(key);}lockInfo.lock.lock();

}

public void unlock(T key) {

LockInfo lockInfo = lockMap.get(key);if (lockInfo.count.get() == 1) {  segmentLock.lock(key);  try {    if (lockInfo.count.get() == 1) {      lockMap.remove(key);    }  } finally {    segmentLock.unlock(key);  }}lockInfo.count.decrementAndGet();lockInfo.unlock();

}

private static class LockInfo {

public ReentrantLock lock;public AtomicInteger count = new AtomicInteger(1);private LockInfo(boolean fair) {  this.lock = new ReentrantLock(fair);}public void lock() {  this.lock.lock();}public void unlock() {  this.lock.unlock();}

}
}
弱援用锁:哈希锁因为引入的分段锁来保障锁创立和销毁的同步,总感觉有点瑕疵,所以写了第三个锁来寻求更好的性能和更细粒度的锁。这个锁的思维是借助java的弱援用来创立锁,把锁的销毁交给jvm的垃圾回收,来防止额定的耗费。

public class WeakHashLock<T> {
private ConcurrentHashMap<T, WeakLockRef<T, ReentrantLock>> lockMap = new ConcurrentHashMap<>();
private ReferenceQueue<ReentrantLock> queue = new ReferenceQueue<>();

public ReentrantLock get(T key) {

if (lockMap.size() > 1000) {  clearEmptyRef();}WeakReference<ReentrantLock> lockRef = lockMap.get(key);ReentrantLock lock = (lockRef == null ? null : lockRef.get());while (lock == null) {  lockMap.putIfAbsent(key, new WeakLockRef<>(new ReentrantLock(), queue, key));  lockRef = lockMap.get(key);  lock = (lockRef == null ? null : lockRef.get());  if (lock != null) {    return lock;  }  clearEmptyRef();}return lock;

}

@SuppressWarnings("unchecked")
private void clearEmptyRef() {

Reference<? extends ReentrantLock> ref;while ((ref = queue.poll()) != null) {  WeakLockRef<T, ? extends ReentrantLock> weakLockRef = (WeakLockRef<T, ? extends ReentrantLock>) ref;  lockMap.remove(weakLockRef.key);}

}

private static final class WeakLockRef<T, K> extends WeakReference<K> {

final T key;private WeakLockRef(K referent, ReferenceQueue<? super K> q, T key) {  super(referent, q);  this.key = key;}

}
}