上篇文章提到查问时会用到缓存,其内置的两级缓存如下:
// 一级缓存,在executor中,与sqlsession绑定// org.apache.ibatis.executor.BaseExecutor#localCache// 指向org.apache.ibatis.cache.impl.PerpetualCache#cacheprivate Map<Object, Object> cache = new HashMap<>();// 二级缓存,在MappedStatement中(对应mapper.xml中的一个crud办法),周期与SqlSessionFactory统一org.apache.ibatis.mapping.MappedStatement#cache// 最终也指向了org.apache.ibatis.cache.impl.PerpetualCache#cacheprivate Map<Object, Object> cache = new HashMap<>();
- 一、二级缓存都是查问缓存,select写入,insert、update、delete则革除
- 一、二级缓存均指向
org.apache.ibatis.cache.impl.PerpetualCache#cache
,实质是一个HashMap - 一、二级缓存Key的计算形式统一,均指向
org.apache.ibatis.executor.BaseExecutor#createCacheKey
,Key的实质:statement的id + offset + limit + sql + param参数
- 一级缓存生命周期和SqlSession统一,默认开启;二级缓存申明周期和SqlSessionFactory统一,需手动开启
- 雷同namespace应用同一个二级缓存;二级缓存和事务关联,事务提交数据才会写入缓存,事务回滚则不会写入
接下来通过源码别离来看一下。
一级缓存
一级缓存的生命周期是sqlSession;在同一sqlSession中,用雷同sql和查问条件屡次查问DB状况,非首次查问会命中一级缓存。
一级缓存默认是开启的,如果想敞开须要减少配置
// == 如果不设置,默认是SESSION(后续的源码剖析会波及这里)<setting name="localCacheScope" value="STATEMENT"/>
以查询方法作为入口
org.apache.ibatis.session.defaults.DefaultSqlSession#selectList(java.lang.String, java.lang.Object, org.apache.ibatis.session.RowBounds)org.apache.ibatis.executor.BaseExecutor#query(org.apache.ibatis.mapping.MappedStatement, java.lang.Object, org.apache.ibatis.session.RowBounds, org.apache.ibatis.session.ResultHandler)List<E> query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler) throws SQLException { BoundSql boundSql = ms.getBoundSql(parameter); // == 计算CacheKey CacheKey key = createCacheKey(ms, parameter, rowBounds, boundSql); // == 查问中应用缓存 return query(ms, parameter, rowBounds, resultHandler, key, boundSql);}
CacheKey计算
org.apache.ibatis.executor.BaseExecutor#createCacheKeyCacheKey createCacheKey(MappedStatement ms, Object parameterObject, RowBounds rowBounds, BoundSql boundSql) { CacheKey cacheKey = new CacheKey(); // == 调用update办法批改cache cacheKey.update(ms.getId()); cacheKey.update(rowBounds.getOffset()); cacheKey.update(rowBounds.getLimit()); cacheKey.update(boundSql.getSql()); // value是参数 cacheKey.update(value); return cacheKey;}
从这里就能够猜测到,CacheKey和statement的id、offset、limit、sql、param参数无关。
进入CacheKey验证这个猜想:
### CacheKey类 ###// 默认37private final int multiplier;// 默认17private int hashcode;private long checksum;private int count;private List<Object> updateList;public void update(Object object) { int baseHashCode = object == null ? 1 : ArrayUtil.hashCode(object); // -- 批改几个属性值 count++; checksum += baseHashCode; baseHashCode *= count; hashcode = multiplier * hashcode + baseHashCode; // -- updateList新增对象 updateList.add(object);}public boolean equals(Object object) { // -- 比拟几个属性值 if (hashcode != cacheKey.hashcode) { return false; } if (checksum != cacheKey.checksum) { return false; } if (count != cacheKey.count) { return false; } // -- 挨个比拟updateList中的对象 for (int i = 0; i < updateList.size(); i++) { Object thisObject = updateList.get(i); Object thatObject = cacheKey.updateList.get(i); if (!ArrayUtil.equals(thisObject, thatObject)) { return false; } } return true;}
查问中应用缓存
org.apache.ibatis.executor.BaseExecutor#query(org.apache.ibatis.mapping.MappedStatement, java.lang.Object, org.apache.ibatis.session.RowBounds, org.apache.ibatis.session.ResultHandler, org.apache.ibatis.cache.CacheKey, org.apache.ibatis.mapping.BoundSql)List<E> query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException { List<E> list; try { queryStack++; // == 1.先从localCache获取数据 list = resultHandler == null ? (List<E>) localCache.getObject(key) : null; if (list != null) { handleLocallyCachedOutputParameters(ms, key, parameter, boundSql); } // == 2.缓存中无数据,从数据库查问 else { list = queryFromDatabase(ms, parameter, rowBounds, resultHandler, key, boundSql); } } // ## 如果scope设置成STATEMENT类型,会清理一级缓存 if (configuration.getLocalCacheScope() == LocalCacheScope.STATEMENT) { // 清理缓存 clearLocalCache(); } return list;}
持续察看代码2
地位:
List<E> queryFromDatabase(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException { List<E> list; // 缓存占位,示意正在执行 localCache.putObject(key, EXECUTION_PLACEHOLDER); try { // == 查问DB逻辑 list = doQuery(ms, parameter, rowBounds, resultHandler, boundSql); } finally { localCache.removeObject(key); } // == 执行后果放入一级缓存 localCache.putObject(key, list); if (ms.getStatementType() == StatementType.CALLABLE) { localOutputParameterCache.putObject(key, parameter); } return list;}
综上,查问过程会向localCache中寄存查问后果。
只不过设置scope为STATEMENT时,每次都会清空缓存——这就是一级缓存生效的机密。
增删改清理缓存
insert和delete办法都会执行update:
public int insert(String statement) { return insert(statement, null);}public int delete(String statement) { return update(statement, null);}
于是察看update即可:
int update(MappedStatement ms, Object parameter) throws SQLException { ErrorContext.instance().resource(ms.getResource()).activity("executing an update").object(ms.getId()); if (closed) { throw new ExecutorException("Executor was closed."); } // == 清理一级缓存 clearLocalCache(); return doUpdate(ms, parameter);}
二级缓存
二级缓存须要关上开关:
- 第1步
<setting name="cacheEnabled" value="STATEMENT"/>
- 第二步
同时在mapper.xml中减少标签
<cache/>
默认的,二级缓存的key是namespace,如果要援用其它命名空间的Cache配置,能够应用如下标签:
<cache-ref namespace="xxx"/>
CachingExecutor
二级缓存的入口在executor创立地位:
public Executor newExecutor(Transaction transaction, ExecutorType executorType) { Executor executor; if (ExecutorType.BATCH == executorType) { executor = new BatchExecutor(this, transaction); } else if (ExecutorType.REUSE == executorType) { executor = new ReuseExecutor(this, transaction); } else { // 默认创立SimpleExecutor executor = new SimpleExecutor(this, transaction); } if (cacheEnabled) { // == 开启二级缓存状况,应用装璜器模式用CachingExecutor包了一层 executor = new CachingExecutor(executor); } return executor;}
察看结构器里做了什么
// 属性相互赋值public CachingExecutor(Executor delegate) { this.delegate = delegate; delegate.setExecutorWrapper(this);}
赋值后CachingExecutor和SimpleExecutor的关系如下
晓得这一点后,咱们来查看CachingExecutor的query办法:
public <E> List<E> query(MappedStatement ms, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler) throws SQLException { BoundSql boundSql = ms.getBoundSql(parameterObject); // == 调用delegate的createCacheKey办法(后面曾经剖析过) CacheKey key = createCacheKey(ms, parameterObject, rowBounds, boundSql); // == 二级缓存的查问 return query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);}
察看query办法的实现
public <E> List<E> query(MappedStatement ms, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException { // ## A.通过MappedStatement获取cache Cache cache = ms.getCache(); if (cache != null) { // 缓存刷新 flushCacheIfRequired(ms); if (ms.isUseCache() && resultHandler == null) { ensureNoOutParams(ms, boundSql); // -- 1.通过tcm获取查问后果 List<E> list = (List<E>) tcm.getObject(cache, key); if (list == null) { // -- 2.tcm中无后果,通过原executor查问(一级缓存+jdbc逻辑) list = delegate.query(ms, parameterObject, rowBounds, resultHandler, key, boundSql); // -- 3.查问后果最终放入tcm中 tcm.putObject(cache, key, list); } return list; } } return delegate.query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);}// ## B.tcm指向这里TransactionalCacheManager tcm = new TransactionalCacheManager();
整顿逻辑很简略,但又有两个问题困扰到我
- 通过MappedStatement获取到的二级缓存cache(
代码A
地位),什么时候初始化的? - 二级缓存和tcm(TransactionalCacheManager)之间有什么分割?
二级缓存初始化
沿着cache倒推,能追溯到Mapper解析。
残缺调用链如下(当作温习了):
// 创立SqlSessionFactoryorg.apache.ibatis.session.SqlSessionFactoryBuilder#build(java.io.Reader, java.lang.String, java.util.Properties)org.apache.ibatis.builder.xml.XMLConfigBuilder#parse// configuration解析org.apache.ibatis.builder.xml.XMLConfigBuilder#parseConfiguration// 解析mapperorg.apache.ibatis.builder.xml.XMLConfigBuilder#mapperElementorg.apache.ibatis.builder.xml.XMLMapperBuilder#parseorg.apache.ibatis.builder.xml.XMLMapperBuilder#configurationElement{ // == 二级缓存的配置援用(执行namespace) cacheRefElement(context.evalNode("cache-ref")); // == 二级缓存的开启 cacheElement(context.evalNode("cache"));}org.apache.ibatis.builder.xml.XMLMapperBuilder#cacheElementorg.apache.ibatis.builder.MapperBuilderAssistant#useNewCache{ // == 二级缓存创立 Cache cache = new CacheBuilder(currentNamespace) // -- Cache实现是PerpetualCache .implementation(valueOrDefault(typeClass, PerpetualCache.class)) // -- 包装器用了LruCache .addDecorator(valueOrDefault(evictionClass, LruCache.class)) .clearInterval(flushInterval) .size(size) .readWrite(readWrite) .blocking(blocking) .properties(props) .build();}
看下二级缓存的整个装璜链(盗图)
SynchronizedCache -> LoggingCache -> SerializedCache -> LruCache -> PerpetualCache。
二级缓存和TransactionalCacheManager的关系
TransactionalCacheManager类:
// ## 保护一个map,key是Cache,value是TransactionalCacheMap<Cache, TransactionalCache> transactionalCaches = new HashMap<>();public Object getObject(Cache cache, CacheKey key) { // ## 1.此办法会在transactionalCaches中建设k-v关系 return getTransactionalCache(cache) ⬇⬇⬇⬇⬇⬇ transactionalCaches.computeIfAbsent(cache, TransactionalCache::new); // == 2.从二级缓存中获取 .getObject(key);}
再察看TransactionalCache
// == 二级缓存private final Cache delegate;// == 二级缓存清理标记private boolean clearOnCommit;// #### 以下两个汇合能够了解为用来寄存长期数据 ####// == 等事务提交时,须要退出二级缓存的对象private final Map<Object, Object> entriesToAddOnCommit;// == 二级缓存中不存在的对象keyprivate final Set<Object> entriesMissedInCache;public void putObject(Object key, Object object) { // 对象记录到entriesToAddOnCommit中 entriesToAddOnCommit.put(key, object);}public Object getObject(Object key) { // 从二级缓存获取 Object object = delegate.getObject(key); if (object == null) { // 二级缓存中不存在,在entriesMissedInCache记录key entriesMissedInCache.add(key); }}
这里可能看出,二级缓存和Transaction(事务)有很深的瓜葛。
那么具体有什么瓜葛?
- 事务提交
察看TransactionManager的commit办法:
org.apache.ibatis.cache.TransactionalCacheManager#commitorg.apache.ibatis.cache.decorators.TransactionalCache#commitpublic void commit() { // == 刷新对象 flushPendingEntries();}private void flushPendingEntries() { for (Map.Entry<Object, Object> entry : entriesToAddOnCommit.entrySet()) { // == 对象从entriesToAddOnCommit刷新到二级缓存中 delegate.putObject(entry.getKey(), entry.getValue()); }}
此处能证实,事务提交时对象从一个长期汇合entriesToAddOnCommit刷新至二级缓存。
- 事务回滚
再察看回滚办法
org.apache.ibatis.cache.decorators.TransactionalCache#rollbackpublic void rollback() { unlockMissedEntries(); // == 重置,将长期汇合数据清理 reset();}private void reset() { clearOnCommit = false; entriesToAddOnCommit.clear(); entriesMissedInCache.clear();}
附录
P6-P7常识合辑