力扣链接:https://leetcode-cn.com/probl...
解题思路:
- 题目要求设计一个O(logn)工夫复杂度的算法,数组+O(logn)基本上能够确定是应用二分法来解决
- 对旋转后的数组进行剖析,找法则,能够发现,选定一个数字,将数组分成前后两个局部,其中一个局部必然是有序的
- 应用二分法,先从中位数开始找,最重要的是左右边界的膨胀,依据trget所处的地位进行膨胀即可
- 确定中位数字之后,咱们须要断定有序区间,因为只有在有序区间外面咱们才不便比拟数字在不在外面
(1)如果mid的左半边有序,那么很容易就能够断定target是不是在左半边,如果在,high = mid -1;如果不在,low := mid +1
(2)如果mid的右半边有序,那么很容易就能够断定在不在右半边,如果在那么low = mid + 1,如果不在那么high = mid -1
(3)须要留神的是low和high的取值,因为有可能这个数字在数组的第一个地位,那么high和low是有可能想等的,同时mid也有可能是和low及high想等的,边界条件判断须要清晰
func search(nums []int, target int) int { n := len(nums) low, high := 0, n - 1 for low <= high { mid := (high - low) >> 1 + low if nums[mid] == target { return mid } if nums[low] <= nums[mid] { // 左半边有序 if nums[low] <= target && target < nums[mid] { high = mid - 1 } else { low = mid +1 } } else { // 右半边有序 if nums[mid] < target && target <= nums[high] { low = mid + 1 } else { high = mid -1 } } } return -1}