一、简介

  • HashMap的源码咱们之前解读过,数组加链表,链表过长时裂变为红黑树。主动扩容机制没细说,明天具体看一下

二、扩容机制

先说论断:

  • hashmap的容量都是2的倍数,比方2,4,8,16,32,64 ...
  • 每次扩容都是扩一倍,2到4 ,4到8,8到16, 16到32 等等
  • 扩容因子:默认是0.75,也能够指定一个小数
  • 扩容工夫点:当容器内的元素数量达到:容量*扩容因子 开始扩容

三、源码剖析

(1)先看构造函数

static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16static final float DEFAULT_LOAD_FACTOR = 0.75f;public HashMap() {    this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted}

默认的构造函数指定了扩容因子:0.75, 默认容量是16

public HashMap(int initialCapacity) {    this(initialCapacity, DEFAULT_LOAD_FACTOR);}

指定初始容量,默认扩容因子:0.75

public HashMap(int initialCapacity, float loadFactor) {    if (initialCapacity < 0)        throw new IllegalArgumentException("Illegal initial capacity: " +                                            initialCapacity);    if (initialCapacity > MAXIMUM_CAPACITY)        initialCapacity = MAXIMUM_CAPACITY;    if (loadFactor <= 0 || Float.isNaN(loadFactor))        throw new IllegalArgumentException("Illegal load factor: " +                                            loadFactor);    this.loadFactor = loadFactor;    this.threshold = tableSizeFor(initialCapacity);}

同时指定初始容量和扩容因子

/**    * The next size value at which to resize (capacity * load factor).    *    * @serial    */int threshold;
  • 留神这个变量:下一个要扩容的值,扩容容量,容量*扩容因子
  • 看这一句:this.threshold = tableSizeFor(initialCapacity);
/** * Returns a power of two size for the given target capacity. */static final int tableSizeFor(int cap) {    int n = cap - 1;    n |= n >>> 1;    n |= n >>> 2;    n |= n >>> 4;    n |= n >>> 8;    n |= n >>> 16;    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;}
  • 这个办法是取给定值四舍五入之后的2的倍数,比方3—->4 ,15->16, 27->32
  • 至此筹备工作就做好了,上面看put办法

(2)put办法

public V put(K key, V value) {    return putVal(hash(key), key, value, false, true);}final V putVal(int hash, K key, V value, boolean onlyIfAbsent,                boolean evict) {    Node<K,V>[] tab; Node<K,V> p; int n, i;    // ① 最开始table为null, 调用resize()办法    if ((tab = table) == null || (n = tab.length) == 0)        n = (tab = resize()).length;    if ((p = tab[i = (n - 1) & hash]) == null)        tab[i] = newNode(hash, key, value, null);    else {        Node<K,V> e; K k;        if (p.hash == hash &&            ((k = p.key) == key || (key != null && key.equals(k))))            e = p;        else if (p instanceof TreeNode)            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);        else {            for (int binCount = 0; ; ++binCount) {                if ((e = p.next) == null) {                    p.next = newNode(hash, key, value, null);                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st                        treeifyBin(tab, hash);                    break;                }                if (e.hash == hash &&                    ((k = e.key) == key || (key != null && key.equals(k))))                    break;                p = e;            }        }        if (e != null) { // existing mapping for key            V oldValue = e.value;            if (!onlyIfAbsent || oldValue == null)                e.value = value;            afterNodeAccess(e);            return oldValue;        }    }    ++modCount;    // ② 完结的时候判断容量是不是大于扩容容量,大于则调用resize办法    if (++size > threshold)        resize();    afterNodeInsertion(evict);    return null;}
  • ① 最开始table为null, 调用resize()办法
  • ② 完结的时候判断容量是不是大于扩容容量,大于则调用resize()办法
  • 看resize()办法
final Node<K,V>[] resize() {    Node<K,V>[] oldTab = table;    int oldCap = (oldTab == null) ? 0 : oldTab.length;    int oldThr = threshold;    int newCap, newThr = 0;    if (oldCap > 0) {        if (oldCap >= MAXIMUM_CAPACITY) {            threshold = Integer.MAX_VALUE;            return oldTab;        }        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&                    oldCap >= DEFAULT_INITIAL_CAPACITY)            newThr = oldThr << 1; // double threshold    }    else if (oldThr > 0) // initial capacity was placed in threshold        newCap = oldThr;    else {               // zero initial threshold signifies using defaults        newCap = DEFAULT_INITIAL_CAPACITY;        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);    }    if (newThr == 0) {        float ft = (float)newCap * loadFactor;        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?                    (int)ft : Integer.MAX_VALUE);    }    threshold = newThr;    @SuppressWarnings({"rawtypes","unchecked"})        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];    table = newTab;    if (oldTab != null) {        for (int j = 0; j < oldCap; ++j) {            Node<K,V> e;            if ((e = oldTab[j]) != null) {                oldTab[j] = null;                if (e.next == null)                    newTab[e.hash & (newCap - 1)] = e;                else if (e instanceof TreeNode)                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);                else { // preserve order                    Node<K,V> loHead = null, loTail = null;                    Node<K,V> hiHead = null, hiTail = null;                    Node<K,V> next;                    do {                        next = e.next;                        if ((e.hash & oldCap) == 0) {                            if (loTail == null)                                loHead = e;                            else                                loTail.next = e;                            loTail = e;                        }                        else {                            if (hiTail == null)                                hiHead = e;                            else                                hiTail.next = e;                            hiTail = e;                        }                    } while ((e = next) != null);                    if (loTail != null) {                        loTail.next = null;                        newTab[j] = loHead;                    }                    if (hiTail != null) {                        hiTail.next = null;                        newTab[j + oldCap] = hiHead;                    }                }            }        }    }    return newTab;}
  • 先剖析第一种状况:Map map = new HashMap();
  • 走最初一个分支 , 容量为16,扩容容量为12

    else {  newCap = DEFAULT_INITIAL_CAPACITY;  newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);}
  • 剖析第二种状况:Map map = new HashMap(20);
  • 走第二个分支,后面剖析过,threshold = tableSizeFor(20) 为 32
  • 新容量newcap = oldThr 为32
// 容量else if (oldThr > 0) // initial capacity was placed in threshold        newCap = oldThr;
  • 新扩容容量newThr = newCap * loadFactor 为 24
// 扩容容量if (newThr == 0) {    float ft = (float)newCap * loadFactor;    newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?                (int)ft : Integer.MAX_VALUE);}threshold = newThr;
  • 剖析第三种状况:下面的map曾经插入24个元素,新插入一个要扩容
  • 走第一个分支,oldCap=32,oldThr=24
  • 扩容:newCap = oldCap << 1 为64
  • 扩扩容容量newThr = oldThr << 1 为48
if (oldCap > 0) {    if (oldCap >= MAXIMUM_CAPACITY) {        threshold = Integer.MAX_VALUE;        return oldTab;    }    else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&                oldCap >= DEFAULT_INITIAL_CAPACITY)        newThr = oldThr << 1; // double threshold}
  • 最初是复制元素到新的table
  • 单个元素间接复制
  • 如果是树,调用树的复制办法
  • 如果是链表,循环链表复制

欢送关注微信公众号:丰极,更多技术学习分享。