作者:闫永强,算法工程师,Datawhale成员

本文通过自建手势数据集,利用YOLOv5s检测,而后通过开源数据集训练squeezenet进行手部关键点预测,最初通过指间的夹角算法来判断具体的手势,并显示进去。文章第四部分为用C++实现整体的ncnn推理(代码较长,可先马后看)

一、YOLOV5训练手部检测

训练及部署思路相似表情辨认,须要将handpose数据集标签改成一类,只检测手部,简化流程,更易上手。

此局部数据集起源格物钛 https://gas.graviti.cn/datase...,具体的成果如图:

本教程所用训练环境:
零碎环境:Ubuntu16.04
cuda版本:10.2
cudnn版本:7.6.5
pytorch版本:1.6.0
python版本:3.8

部署环境:
编译器:vs2015
依赖库:opencv ncnn
外设:一般USB摄像头

二、手部关节点检测

1、依赖环境

和YOLOV5训练手部检测统一。

2、检测数据集筹备

该数据集包含网络图片以及数据集<Large-scale Multiview 3D Hand Pose Dataset> 筛选动作反复度低的图片,进行制作大略有5w张数据样本。其中<Large-scale Multiview 3D Hand Pose Dataset>数据集的官网地址:http://www.rovit.ua.es/datase...,其中标注文件示例如图2所示

制作好能够间接训练的数据集放在了开源数据平台格物钛:https://gas.graviti.com/datas...

3、数据集在线应用

步骤1:装置格物钛平台SDK

pip install tensorbay

步骤2: 数据预处理

要应用曾经解决好能够间接训练的数据集,步骤如下:

a. 关上本文对应数据集链接 https://gas.graviti.cn/datase...,在数据集页面,fork数据集到本人账户下;

b. 点击网页上方开发者工具 --> AccessKey --> 新建一个AccessKey --> 复制这个Key:KEY = 'Acces...........'

咱们能够在不下载数据集的状况下,通过格物钛进行数据预处理,并将后果保留在本地。上面以应用HandPose数据集为例,应用HandPoseKeyPoints数据集操作同HandPose操作一样。

数据集开源地址:

https://gas.graviti.com/datas...

残缺我的项目代码:

https://github.com/datawhalec...

import numpy as npfrom PIL import Imagefrom tensorbay import GASfrom tensorbay.dataset import Datasetdef read_gas_image(data):    with data.open() as fp:        image = Image.open(fp)        image.load()    return np.array(image)# Authorize a GAS client.gas = GAS('填入你的AccessKey')# Get a dataset.dataset = Dataset("HandPose", gas)dataset.enable_cache("data")# List dataset segments.segments = dataset.keys()# Get a segment by namesegment = dataset["train"]for data in segment:    # 图片数据    image = read_gas_image(data)    # 标签数据    # Use the data as you like.    for label_box2d in data.label.box2d:        xmin = label_box2d.xmin        ymin = label_box2d.ymin        xmax = label_box2d.xmax        ymax = label_box2d.ymax        box2d_category = label_box2d.category    break

数据集页面可视化成果:

#数据集划分print(segments)#  ("train",'val')print(len(dataset["train"]), "images in train dataset")print(len(dataset["val"]), "images in valid dataset")# 1306 images in train dataset# 14 images in valid dataset

4、关节点检测原理

关节点检测pipeline流程是:

1)输出图片对应手部的42个关节点坐标,

2)整个网络的backbone能够是任何分类网络,我这里采纳的是squeezenet,而后损失函数是wingloss。

3)整个过程就是输出原图通过squeezenet网路计算出42个坐标值,而后通过wingloss进行回归计算更新权重,最初达到指定阈值,得出最终模型。

5、手部关节点训练

手部关节点算法采纳开源代码参考地址:https://gitcode.net/EricLee/h...

1)预训练模型

预训练模型在上述链接中有相应的网盘链接,能够间接下载。如果不想用预训练模型,能够间接从原始分类网络的原始权重开始训练。

2)模型的训练

以下是训练网络指定参数解释,其意义间接看图中正文就能够了。

训练只须要运行训练命令,指定本人想要指定的参数就能够跑起来了,如下图:

6、手部关节点模型转换

1)装置依赖库

pip install onnx coremltools onnx-simplifier

2)导出onnx模型

python model2onnx.py --model_path squeezenet1_1-size-256-loss-wing_loss-model_epoch-2999.pth --model squeezenet1_1

会呈现如下图所示

其中model2onnx.py文件是在上述链接工程目录下的。此时以后文件夹下会呈现一个相应的onnx模型export。

3)用onnx-simplifer简化模型

为什么要简化?

因为在训练完深度学习的pytorch或者tensorflow模型后,有时候须要把模型转成onnx,然而很多时候,很多节点比方cast节点,Identity这些节点可能都不须要,须要进行简化,这样会不便把模型转成ncnn mnn等端侧部署模型格局。

python -m onnxsim squeezenet1_1_size-256.onnx squeezenet1_1_sim.onnx

会呈现下图:

上述过程实现后就生成了简化版本的模型squeezenet1_1_sim.onnx。

4)把检测模型转换成ncnn模型

能够间接利用网页在线版本转换模型,地址:https://convertmodel.com/ 页面如图:

抉择指标格局ncnn,抉择输出格局onnx,点击抉择,抉择本地的简化版本的模型,而后抉择转换,能够看到转换胜利,上面两个就是转换胜利的模型文件,如图。

三、利用关节点手势辨认算法

通过对检测到的手部关节点之间的角度计算,能够实现简略的手势辨认。例如:计算大拇指向量0-2和3-4之间的角度,它们之间的角度大于某一个角度阈值(经验值)定义为蜿蜒,小于某一个阈值(经验值)为蜷缩。具体成果如上面三张图。



四、工程推理部署整体实现

此关节点手势辨认的整体过程总结:首先是利用指标检测模型检测到手的地位,而后利用手部关节点检测模型,检测手部关节点具体位置,绘制关节点,以及关节点之间的连线。再利用简略的向量之间角度进行手势辨认。

整体的ncnn推理C++ 代码实现:

#include <string>#include <vector>#include "iostream"  #include<cmath>// ncnn#include "ncnn/layer.h"#include "ncnn/net.h"#include "ncnn/benchmark.h"#include "opencv2/core/core.hpp"#include "opencv2/highgui/highgui.hpp"#include <opencv2/imgproc.hpp>#include "opencv2/opencv.hpp"  using namespace std;using namespace cv;static ncnn::UnlockedPoolAllocator g_blob_pool_allocator;static ncnn::PoolAllocator g_workspace_pool_allocator;static ncnn::Net yolov5;static ncnn::Net hand_keyPoints;class YoloV5Focus : public ncnn::Layer{public: YoloV5Focus() {  one_blob_only = true; } virtual int forward(const ncnn::Mat& bottom_blob, ncnn::Mat& top_blob, const ncnn::Option& opt) const {  int w = bottom_blob.w;  int h = bottom_blob.h;  int channels = bottom_blob.c;  int outw = w / 2;  int outh = h / 2;  int outc = channels * 4;  top_blob.create(outw, outh, outc, 4u, 1, opt.blob_allocator);  if (top_blob.empty())   return -100;#pragma omp parallel for num_threads(opt.num_threads)  for (int p = 0; p < outc; p++)  {   const float* ptr = bottom_blob.channel(p % channels).row((p / channels) % 2) + ((p / channels) / 2);   float* outptr = top_blob.channel(p);   for (int i = 0; i < outh; i++)   {    for (int j = 0; j < outw; j++)    {     *outptr = *ptr;     outptr += 1;     ptr += 2;    }    ptr += w;   }  }  return 0; }};DEFINE_LAYER_CREATOR(YoloV5Focus)struct Object{ float x; float y; float w; float h; int label; float prob;};static inline float intersection_area(const Object& a, const Object& b){ if (a.x > b.x + b.w || a.x + a.w < b.x || a.y > b.y + b.h || a.y + a.h < b.y) {  // no intersection  return 0.f; } float inter_width = std::min(a.x + a.w, b.x + b.w) - std::max(a.x, b.x); float inter_height = std::min(a.y + a.h, b.y + b.h) - std::max(a.y, b.y); return inter_width * inter_height;}static void qsort_descent_inplace(std::vector<Object>& faceobjects, int left, int right){ int i = left; int j = right; float p = faceobjects[(left + right) / 2].prob; while (i <= j) {  while (faceobjects[i].prob > p)   i++;  while (faceobjects[j].prob < p)   j--;  if (i <= j)        {   std::swap(faceobjects[i], faceobjects[j]);   i++;   j--;  } }#pragma omp parallel sections {#pragma omp section  {   if (left < j) qsort_descent_inplace(faceobjects, left, j);  }#pragma omp section  {   if (i < right) qsort_descent_inplace(faceobjects, i, right);  } }}static void qsort_descent_inplace(std::vector<Object>& faceobjects){ if (faceobjects.empty())  return; qsort_descent_inplace(faceobjects, 0, faceobjects.size() - 1);}static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold){ picked.clear(); const int n = faceobjects.size(); std::vector<float> areas(n); for (int i = 0; i < n; i++) {  areas[i] = faceobjects[i].w * faceobjects[i].h; } for (int i = 0; i < n; i++) {  const Object& a = faceobjects[i];  int keep = 1;  for (int j = 0; j < (int)picked.size(); j++)  {   const Object& b = faceobjects[picked[j]];   float inter_area = intersection_area(a, b);   float union_area = areas[i] + areas[picked[j]] - inter_area;   // float IoU = inter_area / union_area   if (inter_area / union_area > nms_threshold)    keep = 0;  }  if (keep)   picked.push_back(i); }}static inline float sigmoid(float x){ return static_cast<float>(1.f / (1.f + exp(-x)));}static void generate_proposals(const ncnn::Mat& anchors, int stride, const ncnn::Mat& in_pad, const ncnn::Mat& feat_blob, float prob_threshold, std::vector<Object>& objects){ const int num_grid = feat_blob.h; int num_grid_x; int num_grid_y; if (in_pad.w > in_pad.h) {  num_grid_x = in_pad.w / stride;  num_grid_y = num_grid / num_grid_x; } else {  num_grid_y = in_pad.h / stride;  num_grid_x = num_grid / num_grid_y; } const int num_class = feat_blob.w - 5; const int num_anchors = anchors.w / 2; for (int q = 0; q < num_anchors; q++) {  const float anchor_w = anchors[q * 2];  const float anchor_h = anchors[q * 2 + 1];  const ncnn::Mat feat = feat_blob.channel(q);  for (int i = 0; i < num_grid_y; i++)  {   for (int j = 0; j < num_grid_x; j++)   {    const float* featptr = feat.row(i * num_grid_x + j);    // find class index with max class score    int class_index = 0;    float class_score = -FLT_MAX;    for (int k = 0; k < num_class; k++)    {     float score = featptr[5 + k];     if (score > class_score)     {      class_index = k;      class_score = score;     }    }    float box_score = featptr[4];    float confidence = sigmoid(box_score) * sigmoid(class_score);                    if (confidence >= prob_threshold)    {     float dx = sigmoid(featptr[0]);     float dy = sigmoid(featptr[1]);     float dw = sigmoid(featptr[2]);     float dh = sigmoid(featptr[3]);     float pb_cx = (dx * 2.f - 0.5f + j) * stride;     float pb_cy = (dy * 2.f - 0.5f + i) * stride;     float pb_w = pow(dw * 2.f, 2) * anchor_w;     float pb_h = pow(dh * 2.f, 2) * anchor_h;     float x0 = pb_cx - pb_w * 0.5f;     float y0 = pb_cy - pb_h * 0.5f;     float x1 = pb_cx + pb_w * 0.5f;     float y1 = pb_cy + pb_h * 0.5f;     Object obj;     obj.x = x0;     obj.y = y0;     obj.w = x1 - x0;     obj.h = y1 - y0;     obj.label = class_index;     obj.prob = confidence;     objects.push_back(obj);    }   }  } }}extern "C" { void release() {  fprintf(stderr, "YoloV5Ncnn finished!"); } int init_handKeyPoint() {  ncnn::Option opt;  opt.lightmode = true;  opt.num_threads = 4;  opt.blob_allocator = &g_blob_pool_allocator;  opt.workspace_allocator = &g_workspace_pool_allocator;  opt.use_packing_layout = true;  fprintf(stderr, "handKeyPoint init!\n");  hand_keyPoints.opt = opt;  int ret_hand = hand_keyPoints.load_param("squeezenet1_1.param");  //squeezenet1_1   resnet_50  if (ret_hand != 0) {   std::cout << "ret_hand:" << ret_hand << std::endl;  }  ret_hand = hand_keyPoints.load_model("squeezenet1_1.bin");  //squeezenet1_1   resnet_50  if (ret_hand != 0) {   std::cout << "ret_hand:" << ret_hand << std::endl;  }  return 0; } int init() {  fprintf(stderr, "YoloV5sNcnn init!\n");  ncnn::Option opt;  opt.lightmode = true;  opt.num_threads = 4;  opt.blob_allocator = &g_blob_pool_allocator;  opt.workspace_allocator = &g_workspace_pool_allocator;  opt.use_packing_layout = true;  yolov5.opt = opt;  yolov5.register_custom_layer("YoloV5Focus", YoloV5Focus_layer_creator);  // init param  {   int ret = yolov5.load_param("yolov5s.param");     if (ret != 0)   {    std::cout << "ret= " << ret << std::endl;    fprintf(stderr, "YoloV5Ncnn, load_param failed");    return -301;   }  }  // init bin  {   int ret = yolov5.load_model("yolov5s.bin");     if (ret != 0)   {    fprintf(stderr, "YoloV5Ncnn, load_model failed");    return -301;   }  }  return 0; } int detect(cv::Mat img, std::vector<Object> &objects) {  double start_time = ncnn::get_current_time();  const int target_size = 320;  const int width = img.cols;  const int height = img.rows;  int w = img.cols;  int h = img.rows;  float scale = 1.f;  if (w > h)  {   scale = (float)target_size / w;   w = target_size;   h = h * scale;  }  else  {   scale = (float)target_size / h;   h = target_size;   w = w * scale;  }  cv::resize(img, img, cv::Size(w, h));  ncnn::Mat in = ncnn::Mat::from_pixels(img.data, ncnn::Mat::PIXEL_BGR2RGB, w, h);  int wpad = (w + 31) / 32 * 32 - w;  int hpad = (h + 31) / 32 * 32 - h;  ncnn::Mat in_pad;  ncnn::copy_make_border(in, in_pad, hpad / 2, hpad - hpad / 2, wpad / 2, wpad - wpad / 2, ncnn::BORDER_CONSTANT, 114.f);          {   const float prob_threshold = 0.4f;   const float nms_threshold = 0.51f;   const float norm_vals[3] = { 1 / 255.f, 1 / 255.f, 1 / 255.f };   in_pad.substract_mean_normalize(0, norm_vals);   ncnn::Extractor ex = yolov5.create_extractor();      ex.input("images", in_pad);   std::vector<Object> proposals;   {    ncnn::Mat out;    ex.extract("output", out);    ncnn::Mat anchors(6);    anchors[0] = 10.f;    anchors[1] = 13.f;    anchors[2] = 16.f;    anchors[3] = 30.f;    anchors[4] = 33.f;    anchors[5] = 23.f;    std::vector<Object> objects8;    generate_proposals(anchors, 8, in_pad, out, prob_threshold, objects8);    proposals.insert(proposals.end(), objects8.begin(), objects8.end());   }               {    ncnn::Mat out;    ex.extract("771", out);    ncnn::Mat anchors(6);    anchors[0] = 30.f;    anchors[1] = 61.f;    anchors[2] = 62.f;    anchors[3] = 45.f;    anchors[4] = 59.f;    anchors[5] = 119.f;                    std::vector<Object> objects16;    generate_proposals(anchors, 16, in_pad, out, prob_threshold, objects16);    proposals.insert(proposals.end(), objects16.begin(), objects16.end());   }   {    ncnn::Mat out;    ex.extract("791", out);    ncnn::Mat anchors(6);    anchors[0] = 116.f;    anchors[1] = 90.f;    anchors[2] = 156.f;    anchors[3] = 198.f;    anchors[4] = 373.f;    anchors[5] = 326.f;    std::vector<Object> objects32;    generate_proposals(anchors, 32, in_pad, out, prob_threshold, objects32);    proposals.insert(proposals.end(), objects32.begin(), objects32.end());   }   // sort all proposals by score from highest to lowest   qsort_descent_inplace(proposals);   std::vector<int> picked;   nms_sorted_bboxes(proposals, picked, nms_threshold);   int count = picked.size();   objects.resize(count);   for (int i = 0; i < count; i++)   {    objects[i] = proposals[picked[i]];    float x0 = (objects[i].x - (wpad / 2)) / scale;    float y0 = (objects[i].y - (hpad / 2)) / scale;    float x1 = (objects[i].x + objects[i].w - (wpad / 2)) / scale;    float y1 = (objects[i].y + objects[i].h - (hpad / 2)) / scale;    // clip    x0 = std::max(std::min(x0, (float)(width - 1)), 0.f);    y0 = std::max(std::min(y0, (float)(height - 1)), 0.f);    x1 = std::max(std::min(x1, (float)(width - 1)), 0.f);    y1 = std::max(std::min(y1, (float)(height - 1)), 0.f);    objects[i].x = x0;    objects[i].y = y0;    objects[i].w = x1;    objects[i].h = y1;   }  }  return 0; }}static const char* class_names[] = {"hand"};void draw_face_box(cv::Mat& bgr, std::vector<Object> object){ for (int i = 0; i < object.size(); i++) {  const auto obj = object[i];  cv::rectangle(bgr, cv::Point(obj.x, obj.y), cv::Point(obj.w, obj.h), cv::Scalar(0, 255, 0), 3, 8, 0);  std::cout << "label:" << class_names[obj.label] << std::endl;  string emoji_path = "emoji\\" + string(class_names[obj.label]) + ".png";  cv::Mat logo = cv::imread(emoji_path);  if (logo.empty()) {   std::cout << "imread logo failed!!!" << std::endl;   return;  }  resize(logo, logo, cv::Size(80, 80));  cv::Mat imageROI = bgr(cv::Range(obj.x, obj.x + logo.rows), cv::Range(obj.y, obj.y + logo.cols));  logo.copyTo(imageROI); }}static int detect_resnet(const cv::Mat& bgr,std::vector<float>& output) { ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data,ncnn::Mat::PIXEL_RGB,bgr.cols,bgr.rows,256,256); const float mean_vals[3] = { 104.f,117.f,123.f };// const float norm_vals[3] = { 1/255.f, 1/255.f, 1/255.f };//1/255.f in.substract_mean_normalize(mean_vals, norm_vals);  //0  mean_vals, norm_vals ncnn::Extractor ex = hand_keyPoints.create_extractor(); ex.input("input", in); ncnn::Mat out; ex.extract("output",out);  std::cout << "out.w:" << out.w <<" out.h: "<< out.h <<std::endl; output.resize(out.w); for (int i = 0; i < out.w; i++) {  output[i] = out[i]; } return 0;}float vector_2d_angle(cv::Point p1,cv::Point p2) { //求解二维向量的角度 float angle = 0.0; try {  float radian_value = acos((p1.x*p2.x+p1.y*p2.y)/(sqrt(p1.x*p1.x+p1.y*p1.y)*sqrt(p2.x*p2.x+p2.y*p2.y)));  angle = 180*radian_value/3.1415; }catch(...){  angle = 65535.; } if (angle > 180.) {  angle = 65535.; } return angle;}std::vector<float> hand_angle(std::vector<int>& hand_x,std::vector<int>& hand_y) { //获取对应手相干向量的二维角度,依据角度确定手势 float angle = 0.0; std::vector<float> angle_list; //------------------- thumb 大拇指角度 angle = vector_2d_angle(cv::Point((hand_x[0]-hand_x[2]),(hand_y[0]-hand_y[2])),cv::Point((hand_x[3]-hand_x[4]),(hand_y[3]-hand_y[4]))); angle_list.push_back(angle); //--------------------index 食指角度 angle = vector_2d_angle(cv::Point((hand_x[0] - hand_x[6]), (hand_y[0] - hand_y[6])), cv::Point((hand_x[7] - hand_x[8]), (hand_y[7] - hand_y[8]))); angle_list.push_back(angle); //---------------------middle  中指角度 angle = vector_2d_angle(cv::Point((hand_x[0] - hand_x[10]), (hand_y[0] - hand_y[10])), cv::Point((hand_x[11] - hand_x[12]), (hand_y[11] - hand_y[12]))); angle_list.push_back(angle); //----------------------ring 无名指角度 angle = vector_2d_angle(cv::Point((hand_x[0] - hand_x[14]), (hand_y[0] - hand_y[14])), cv::Point((hand_x[15] - hand_x[16]), (hand_y[15] - hand_y[16]))); angle_list.push_back(angle); //-----------------------pink 小拇指角度 angle = vector_2d_angle(cv::Point((hand_x[0] - hand_x[18]), (hand_y[0] - hand_y[18])), cv::Point((hand_x[19] - hand_x[20]), (hand_y[19] - hand_y[20]))); angle_list.push_back(angle); return angle_list;}string h_gestrue(std::vector<float>& angle_lists) { //二维束缚的形式定义手势 //fist five gun love one six three thumbup yeah float thr_angle = 65.; float thr_angle_thumb = 53.; float thr_angle_s = 49.; string gesture_str; bool flag = false; for (int i = 0; i < angle_lists.size(); i++) {  if (abs(65535 - int(angle_lists[i])) > 0) {   flag = true;   //进入手势判断标识  } } std::cout << "flag:" << flag << std::endl; if (flag) {  if (angle_lists[0] > thr_angle_thumb && angle_lists[1] > thr_angle    && angle_lists[2] > thr_angle && angle_lists[3] > thr_angle    && angle_lists[4] > thr_angle) {   gesture_str = "fist";  }  else if (angle_lists[0] < thr_angle_s && angle_lists[1] < thr_angle_s   && angle_lists[2] < thr_angle_s && angle_lists[3] < thr_angle_s   && angle_lists[4] < thr_angle_s) {   gesture_str = "five";  }  else if(angle_lists[0] < thr_angle_s && angle_lists[1] < thr_angle_s   && angle_lists[2] > thr_angle && angle_lists[3] > thr_angle   && angle_lists[4] > thr_angle){   gesture_str = "gun";  }  else if (angle_lists[0] < thr_angle_s && angle_lists[1] < thr_angle_s   && angle_lists[2] > thr_angle && angle_lists[3] > thr_angle   && angle_lists[4] < thr_angle_s) {   gesture_str = "love";  }  else if (angle_lists[0] < 5 && angle_lists[1] < thr_angle_s   && angle_lists[2] > thr_angle && angle_lists[3] > thr_angle   && angle_lists[4] > thr_angle) {   gesture_str = "one";  }  else if (angle_lists[0] < thr_angle_s && angle_lists[1] > thr_angle   && angle_lists[2] > thr_angle && angle_lists[3] > thr_angle   && angle_lists[4] < thr_angle_s) {   gesture_str = "six";  }  else if (angle_lists[0] > thr_angle_thumb && angle_lists[1] < thr_angle_s   && angle_lists[2] < thr_angle_s && angle_lists[3] < thr_angle_s   && angle_lists[4] > thr_angle) {   gesture_str = "three";  }  else if (angle_lists[0] < thr_angle_s && angle_lists[1] > thr_angle   && angle_lists[2] > thr_angle && angle_lists[3] > thr_angle   && angle_lists[4] > thr_angle) {   gesture_str = "thumbUp";  }  else if (angle_lists[0] > thr_angle_thumb && angle_lists[1] < thr_angle_s   && angle_lists[2] < thr_angle_s && angle_lists[3] > thr_angle   && angle_lists[4] > thr_angle) {   gesture_str = "two";  }  } return gesture_str;}int main(){ Mat frame; VideoCapture capture(0); init(); init_handKeyPoint(); while (true) {  capture >> frame;              if (!frame.empty()) {             std::vector<Object> objects;   detect(frame, objects);   std::vector<float> hand_output;   for (int j = 0; j < objects.size(); ++j) {    cv::Mat handRoi;    int x, y, w, h;    try {     x = (int)objects[j].x < 0 ? 0 : (int)objects[j].x;     y = (int)objects[j].y < 0 ? 0 : (int)objects[j].y;     w = (int)objects[j].w < 0 ? 0 : (int)objects[j].w;     h = (int)objects[j].h < 0 ? 0 : (int)objects[j].h;     if (w > frame.cols){      w = frame.cols;     }     if (h > frame.rows) {      h = frame.rows;     }                    }    catch (cv::Exception e) {            }    //把手区域向外扩30个像素    x = max(0, x - 30);    y = max(0, y - 30);    int w_ = min(w - x + 30, 640);    int h_ = min(h - y + 30, 480);    cv::Rect roi(x,y,w_,h_);    handRoi = frame(roi);    cv::resize(handRoi,handRoi,cv::Size(256,256));    //detect_resnet(handRoi, hand_output);    detect_resnet(handRoi, hand_output);    std::vector<float> angle_lists;    string gesture_string;    std::vector<int> hand_points_x;  //    std::vector<int> hand_points_y;    for (int k = 0; k < hand_output.size()/2; k++) {     int x = int(hand_output[k * 2 + 0] * handRoi.cols);//+int(roi.x)-1;     int y = int(hand_output[k * 2 + 1] * handRoi.rows);// +int(roi.y) - 1;     //x1 = x1 < 0 ? abs(x1) : x1;     //x2 = x2 < 0 ? abs(x2) : x2;     hand_points_x.push_back(x);     hand_points_y.push_back(y);     std::cout << "x1: " << x << " x2: " << y << std::endl;     cv::circle(handRoi, cv::Point(x,y), 3, (0, 255, 0), 3);     cv::circle(handRoi, cv::Point(x,y), 3, (0, 255, 0), 3);                        }                    cv::line(handRoi, cv::Point(hand_points_x[0], hand_points_y[0]), cv::Point(hand_points_x[1], hand_points_y[1]), cv::Scalar(255, 0, 0), 3);    cv::line(handRoi, cv::Point(hand_points_x[1], hand_points_y[1]), cv::Point(hand_points_x[2], hand_points_y[2]), cv::Scalar(255, 0, 0), 3);    cv::line(handRoi, cv::Point(hand_points_x[2], hand_points_y[2]), cv::Point(hand_points_x[3], hand_points_y[3]), cv::Scalar(255, 0, 0), 3);                    cv::line(handRoi, cv::Point(hand_points_x[3], hand_points_y[3]), cv::Point(hand_points_x[4], hand_points_y[4]), cv::Scalar(255, 0, 0), 3);    cv::line(handRoi, cv::Point(hand_points_x[0], hand_points_y[0]), cv::Point(hand_points_x[5], hand_points_y[5]), cv::Scalar(0, 255, 0), 3);    cv::line(handRoi, cv::Point(hand_points_x[5], hand_points_y[5]), cv::Point(hand_points_x[6], hand_points_y[6]), cv::Scalar(0, 255, 0), 3);    cv::line(handRoi, cv::Point(hand_points_x[6], hand_points_y[6]), cv::Point(hand_points_x[7], hand_points_y[7]), cv::Scalar(0, 255, 0), 3);    cv::line(handRoi, cv::Point(hand_points_x[7], hand_points_y[7]), cv::Point(hand_points_x[8], hand_points_y[8]), cv::Scalar(0, 255, 0), 3);    cv::line(handRoi, cv::Point(hand_points_x[0], hand_points_y[0]), cv::Point(hand_points_x[9], hand_points_y[9]), cv::Scalar(0, 0, 255), 3);    cv::line(handRoi, cv::Point(hand_points_x[9], hand_points_y[9]), cv::Point(hand_points_x[10], hand_points_y[10]), cv::Scalar(0, 0, 255), 3);    cv::line(handRoi, cv::Point(hand_points_x[10], hand_points_y[10]), cv::Point(hand_points_x[11], hand_points_y[11]), cv::Scalar(0, 0, 255), 3);    cv::line(handRoi, cv::Point(hand_points_x[11], hand_points_y[11]), cv::Point(hand_points_x[12], hand_points_y[12]), cv::Scalar(0, 0, 255), 3);          cv::line(handRoi, cv::Point(hand_points_x[0], hand_points_y[0]), cv::Point(hand_points_x[13], hand_points_y[13]), cv::Scalar(255, 0, 0), 3);    cv::line(handRoi, cv::Point(hand_points_x[13], hand_points_y[13]), cv::Point(hand_points_x[14], hand_points_y[14]), cv::Scalar(255, 0, 0), 3);    cv::line(handRoi, cv::Point(hand_points_x[14], hand_points_y[14]), cv::Point(hand_points_x[15], hand_points_y[15]), cv::Scalar(255, 0, 0), 3);    cv::line(handRoi, cv::Point(hand_points_x[15], hand_points_y[15]), cv::Point(hand_points_x[16], hand_points_y[16]), cv::Scalar(255, 0, 0), 3);    cv::line(handRoi, cv::Point(hand_points_x[0], hand_points_y[0]), cv::Point(hand_points_x[17], hand_points_y[17]), cv::Scalar(0, 255, 0), 3);    cv::line(handRoi, cv::Point(hand_points_x[17], hand_points_y[17]), cv::Point(hand_points_x[18], hand_points_y[18]), cv::Scalar(0, 255, 0), 3);                    cv::line(handRoi, cv::Point(hand_points_x[18], hand_points_y[18]), cv::Point(hand_points_x[19], hand_points_y[19]), cv::Scalar(0, 255, 0), 3);    cv::line(handRoi, cv::Point(hand_points_x[19], hand_points_y[19]), cv::Point(hand_points_x[20], hand_points_y[20]), cv::Scalar(0, 255, 0), 3);                    angle_lists =  hand_angle(hand_points_x, hand_points_y);    gesture_string = h_gestrue(angle_lists);    std::cout << "getsture_string:" << gesture_string << std::endl;    cv::putText(handRoi,gesture_string,cv::Point(30,30),cv::FONT_HERSHEY_COMPLEX,1, cv::Scalar(0, 255, 255), 1, 1, 0);    cv::imshow("handRoi", handRoi);    cv::waitKey(10);    angle_lists.clear();    hand_points_x.clear();    hand_points_y.clear();   }  }  if (cv::waitKey(20) == 'q')       break; } capture.release();      return 0;}               

更多信息请拜访格物钛官网