1、需要

要用JS来实现魔法棒的性能,首先须要实现找到邻近色彩的像素点,再标识进去。
刚实现了找到了邻近根本的像素点的局部。

2、代码

是图像宰割中的泛洪算法在前端中的利用。

<!-- * @Author: ArdenZhao * @Date: 2022-01-18 14:09:54 * @LastEditors: Do not edit * @LastEditTime: 2022-02-08 19:02:01 * @FilePath: /magic_wand/demo/4、myFloodFillData.html--><!DOCTYPE html><html><head>  <meta charset="utf-8">  <title>Hello OpenCV.js</title>  <style>    #imageSrc,    #canvasOutput {      width: 50%;      height: auto;    }  </style></head><body>  <h2>Hello OpenCV.js</h2>  <p id="status">OpenCV.js is loading...</p>  <div>    <div class="inputoutput">      <img id="imageSrc" alt="No Image" />      <div class="caption">imageSrc</div>    </div>    <div class="inputoutput">      <canvas id="canvasOutput"></canvas>      <div class="caption">canvasOutput</div>    </div>  </div>  <script type="text/javascript">    //获取图片标签    let imgElement = document.getElementById('imageSrc');    //获取canvas标签    let canvasElement = document.getElementById('canvasOutput');    imgElement.src = 'https://t7.baidu.com/it/u=1595072465,3644073269&fm=193&f=GIF';    imgElement.crossOrigin = "Anonymous";    function init_image(self, image_file) {      self.image = cv2.imdecode(np.fromfile(image_file, dtype = np.uint8), 1)      self.image_raw = self.image.copy()      // self.img_h, self.img_w = self.image.shape[0: 2]  // 原图宽高    }    let imageArr = [];    // 2、获取图片的宽高    let imageWidth = 0    let imageHeight = 0    imgElement.onload = function () {      imageWidth = imgElement.width      imageHeight = imgElement.height    };    //异步获取后显示失常    function onOpenCvReady() {      console.log('[ cv ] >', cv)      document.getElementById('status').innerHTML = 'OpenCV.js is ready.';      cv['onRuntimeInitialized'] = () => {        // 1、获取图片的数据        let mat = cv.imread(imgElement);        let arr = []        // 3、构建图片的二维数组        for (let i = 0; i < mat.data.length; i = i + 4) {          arr.push(mat.data.slice(i, i + 4));        }        for (let j = 0; j < arr.length; j = j + imageWidth) {          imageArr.push(arr.slice(j, j + imageWidth));        }        cv.imshow('canvasOutput', mat);        mat.delete(); //避免内存透露      };    }    // 4、获取到Canvas点击的坐标    canvasElement.addEventListener('click', (e) => {      let clickPoint = getMousePos(canvasElement, e)      let seedMark = myFloodFill(imageArr, 10, clickPoint) // 默认20-30左右,动静输出    }, false);    function getMousePos(canvas, event) {      var rect = canvas.getBoundingClientRect();//办法返回元素的大小及其绝对于视口的地位      var x = event.clientX - rect.left * (canvas.width / rect.width);      var y = event.clientY - rect.top * (canvas.height / rect.height);      return [Math.round(x), Math.round(y)];    }    // 5、改写泛洪办法,取得返回的区域    function myFloodFill(image, thresh, seedpoint) {      // 构建图片的二维数组      let seedMark = new Array(imageHeight).fill(0).map(() => new Array(imageWidth).fill(0));      // 四邻域      let p = 4      let connection = [[-1, 0], [0, 1], [1, 0], [0, -1]]      let seeds = [[seedpoint[1], seedpoint[0]]] //竖直方向在前,程度方向在后      let interval = thresh      while (seeds.length > 0) {        // 栈顶元素出栈        // pt=(y,x),opencv中程度为x坐标,竖直为y坐标,seeds输出坐标为先竖直坐标,后程度坐标        let pt = seeds.shift(0)        let Ra = image[pt[0]][pt[1]][0]        let Ga = image[pt[0]][pt[1]][1]        let Ba = image[pt[0]][pt[1]][2]        for (let i = 0; i < p; i++) {          let x = pt[1] + connection[i][0]          let y = pt[0] + connection[i][1]          // 检测边界点          if (x < 0 || x >= imageWidth || y < 0 || y >= imageHeight) {            continue          }          let Rb = image[y][x][0]          let Gb = image[y][x][1]          let Bb = image[y][x][2]          // 满足魔法点的条件          if (seedMark[y][x] == 0 && ((Ra - Rb) <= interval) && (Ga - Gb) <= interval && (Ba - Bb) <= interval) {            // 将魔法点标记为已拜访            seedMark[y][x] = 1            // 将魔法点压入栈            seeds.push([y, x])          }        }      }      return seedMark    }    // todo    // 6、显示图像的遮层  </script>  <script async src="https://docs.opencv.org/4.5.0/opencv.js" onload="onOpenCvReady();" type="text/javascript"></script></body></html>