作者:陈信达,上海科技大学,Datawhale成员

AI技术曾经利用到了咱们生存中的方方面面,而指标检测是其中利用最宽泛的算法之一,疫情测温仪器、巡检机器人、甚至何同学的airdesk中都有指标检测算法的影子。下图就是airdesk,何同学通过指标检测算法定位手机地位,而后管制无线充电线圈挪动到手机下方主动给手机充电。这看似简略的利用背地其实是简单的实践和一直迭代的AI算法,明天笔者就教大家如何疾速上手指标检测模型YOLOv5,并将其利用到情感辨认中。

一、背景

明天的内容来源于2019年发表在T-PAMI上的一篇文章[1],在这之前曾经有大量研究者通过AI算法辨认人类情感,不过本文的作者认为,人们的情感不仅与面部表情和身材动作等无关,还和以后身处的环境非亲非故,比方下图的男孩应该是一个诧异的表情:

不过加上周围环境后,刚刚咱们认为的情感就与实在情感不符:

本文的次要思维就是将背景图片和指标检测模型检测出的人物信息联合起来辨认情感。

其中,作者将情感分为离散和间断两个维度。上面会解释以不便了解,曾经分明的同学能够快划跳过。

间断情感解释
Valence (V)measures how positive or pleasant an emotion is, ranging from negative to positive(快乐水平)
Arousal (A)measures the agitation level of the person, ranging from non-active / in calm to agitated / ready to act(冲动水平)
Dominance (D)measures the level of control a person feels of the situation, ranging from submissive / non-control to dominant / in-control(气场大小)
离散情绪解释
Affectionfond feelings; love; tenderness
Angerintense displeasure or rage; furious; resentful
Annoyancebothered by something or someone; irritated; impatient; frustrated
Anticipationstate of looking forward; hoping on or getting prepared for possible future events
Aversionfeeling disgust, dislike, repulsion; feeling hate
Confidencefeeling of being certain; conviction that an outcome will be favorable; encouraged; proud
Disapprovalfeeling that something is wrong or reprehensible; contempt; hostile
Disconnectionfeeling not interested in the main event of the surrounding; indifferent; bored; distracted
Disquietmentnervous; worried; upset; anxious; tense; pressured; alarmed
Doubt/Confusiondifficulty to understand or decide; thinking about different options
Embarrassmentfeeling ashamed or guilty
Engagementpaying attention to something; absorbed into something; curious; interested
Esteemfeelings of favourable opinion or judgement; respect; admiration; gratefulness
Excitementfeeling enthusiasm; stimulated; energetic
Fatigueweariness; tiredness; sleepy
Fearfeeling suspicious or afraid of danger, threat, evil or pain; horror
Happinessfeeling delighted; feeling enjoyment or amusement
Painphysical suffering
Peacewell being and relaxed; no worry; having positive thoughts or sensations; satisfied
Pleasurefeeling of delight in the senses
Sadnessfeeling unhappy, sorrow, disappointed, or discouraged
Sensitivityfeeling of being physically or emotionally wounded; feeling delicate or vulnerable
Sufferingpsychological or emotional pain; distressed; anguished
Surprisesudden discovery of something unexpected
Sympathystate of sharing others emotions, goals or troubles; supportive; compassionate
Yearningstrong desire to have something; jealous; envious; lust

二、筹备工作与模型推理

2.1 疾速入门

只需实现上面五步即可辨认情感!

  1. 通过克隆或者压缩包将我的项目下载到本地:git clone https://github.com/chenxindaa...
  2. 将解压后的模型文件放到emotic/debug_exp/models中。(模型文件下载地址:链接:https://gas.graviti.com/datas...)
  3. 新建虚拟环境(可选):
conda create -n emotic python=3.7conda activate emotic
  1. 环境配置
python -m pip install -r requirement.txt
  1. cd到emotic文件夹下,输出并执行:
python detect.py

运行完后后果会保留在emotic/runs/detect文件夹下。

2.2 基本原理

看到这里可能会有小伙伴问了:如果我想辨认别的图片该怎么改?能够反对视频和摄像头吗?理论利用中应该怎么批改YOLOv5的代码呢?

对于前两个问题,YOLOv5曾经帮咱们解决,咱们只须要批改detect.py中的第158行:

parser.add_argument('--source', type=str, default='./testImages', help='source')  # file/folder, 0 for webcam

将'./testImages'改为想要辨认的图像和视频的门路,也能够是文件夹的门路。对于调用摄像头,只须要将'./testImages'改为'0',则会调用0号摄像头进行辨认。

批改YOLOv5:

在detect.py中,最重要的代码就是上面几行:

for *xyxy, conf, cls in reversed(det):    c = int(cls)  # integer class    if c != 0:        continue    pred_cat, pred_cont = inference_emotic(im0, (int(xyxy[0]), int(xyxy[1]), int(xyxy[2]), int(xyxy[3])))    if save_img or opt.save_crop or view_img:  # Add bbox to image        label = None if opt.hide_labels else (names[c] if opt.hide_conf else f'{names[c]} {conf:.2f}')        plot_one_box(xyxy, im0, pred_cat=pred_cat, pred_cont=pred_cont, label=label, color=colors(c, True), line_thickness=opt.line_thickness)        if opt.save_crop:            save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)

其中det是YOLOv5辨认进去的后果,例如tensor([[121.00000, 7.00000, 480.00000, 305.00000, 0.67680, 0.00000], [278.00000, 166.00000, 318.00000, 305.00000, 0.66222, 27.00000]])就是辨认出了两个物体。

xyxy是物体检测框的坐标,对于下面的例子的第一个物体,xyxy = [121.00000, 7.00000, 480.00000, 305.00000]对应坐标(121, 7)和(480, 305),两个点能够确定一个矩形也就是检测框。conf是该物体的置信度,第一个物体置信度为0.67680。cls则是该物体对应的类别,这里0对应的是“人”,因为咱们只辨认人的情感,所以cls不是0就能够跳过该过程。这里我用了YOLOv5官网给的推理模型,其中蕴含很多类别,大家也能够本人训练一个只有“人”这一类别的模型,具体过程能够参考:

在辨认出物体坐标后输出emotic模型就能够失去对应的情感,即

pred_cat, pred_cont = inference_emotic(im0, (int(xyxy[0]), int(xyxy[1]), int(xyxy[2]), int(xyxy[3])))

这里我将原来的图片可视化做了些扭转,将emotic的后果打印到图片上:

def plot_one_box(x, im, pred_cat, pred_cont, color=(128, 128, 128), label=None, line_thickness=3):    # Plots one bounding box on image 'im' using OpenCV    assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to plot_on_box() input image.'    tl = line_thickness or round(0.002 * (im.shape[0] + im.shape[1]) / 2) + 1  # line/font thickness    c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))    cv2.rectangle(im, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)    if label:        tf = max(tl - 1, 1)  # font thickness        t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]        c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3        cv2.rectangle(im, c1, c2, color, -1, cv2.LINE_AA)  # filled        #cv2.putText(im, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)        for id, text in enumerate(pred_cat):            cv2.putText(im, text, (c1[0], c1[1] + id*20), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)

运行后果:

实现了下面的步骤,咱们就能够开始整活了。家喻户晓,特朗普以其独特的演讲魅力驯服了许多选民,上面咱们就看看AI眼中的特朗普是怎么演讲的:

能够看出自信是让人服气的必备条件之一。

三、模型训练

3.1 数据预处理

首先通过格物钛进行数据预处理,在解决数据之前须要先找到本人的accessKey(开发者工具AccessKey新建AccessKey):

咱们能够在不下载数据集的状况下,通过格物钛进行预处理,并将后果保留在本地(上面的代码不在我的项目中,须要本人创立一个py文件运行,记得填入AccessKey):

from tensorbay import GASfrom tensorbay.dataset import Datasetimport numpy as npfrom PIL import Imageimport cv2from tqdm import tqdmimport osdef cat_to_one_hot(y_cat):    cat2ind = {'Affection': 0, 'Anger': 1, 'Annoyance': 2, 'Anticipation': 3, 'Aversion': 4,               'Confidence': 5, 'Disapproval': 6, 'Disconnection': 7, 'Disquietment': 8,               'Doubt/Confusion': 9, 'Embarrassment': 10, 'Engagement': 11, 'Esteem': 12,               'Excitement': 13, 'Fatigue': 14, 'Fear': 15, 'Happiness': 16, 'Pain': 17,               'Peace': 18, 'Pleasure': 19, 'Sadness': 20, 'Sensitivity': 21, 'Suffering': 22,               'Surprise': 23, 'Sympathy': 24, 'Yearning': 25}    one_hot_cat = np.zeros(26)    for em in y_cat:        one_hot_cat[cat2ind[em]] = 1    return one_hot_catgas = GAS('填入你的AccessKey')dataset = Dataset("Emotic", gas)segments = dataset.keys()save_dir = './data/emotic_pre'if not os.path.exists(save_dir):    os.makedirs(save_dir)for seg in ['test', 'val', 'train']:    segment = dataset[seg]    context_arr, body_arr, cat_arr, cont_arr = [], [], [], []    for data in tqdm(segment):        with data.open() as fp:            context = np.asarray(Image.open(fp))        if len(context.shape) == 2:            context = cv2.cvtColor(context, cv2.COLOR_GRAY2RGB)        context_cv = cv2.resize(context, (224, 224))        for label_box2d in data.label.box2d:            xmin = label_box2d.xmin            ymin = label_box2d.ymin            xmax = label_box2d.xmax            ymax = label_box2d.ymax            body = context[ymin:ymax, xmin:xmax]            body_cv = cv2.resize(body, (128, 128))            context_arr.append(context_cv)            body_arr.append(body_cv)            cont_arr.append(np.array([int(label_box2d.attributes['valence']), int(label_box2d.attributes['arousal']), int(label_box2d.attributes['dominance'])]))            cat_arr.append(np.array(cat_to_one_hot(label_box2d.attributes['categories'])))    context_arr = np.array(context_arr)    body_arr = np.array(body_arr)    cat_arr = np.array(cat_arr)    cont_arr = np.array(cont_arr)    np.save(os.path.join(save_dir, '%s_context_arr.npy' % (seg)), context_arr)    np.save(os.path.join(save_dir, '%s_body_arr.npy' % (seg)), body_arr)    np.save(os.path.join(save_dir, '%s_cat_arr.npy' % (seg)), cat_arr)    np.save(os.path.join(save_dir, '%s_cont_arr.npy' % (seg)), cont_arr)

等程序运行实现后能够看到多了一个文件夹emotic_pre,外面有一些npy文件则代表数据预处理胜利。

3.2 模型训练

关上main.py文件,35行开始是模型的训练参数,运行该文件即可开始训练。

四、Emotic模型详解

4.1 模型构造

该模型的思维非常简单,流程图中的高低两个网络其实就是两个resnet18,下面的网络负责提取人体特色,输出为128×128的彩色图片,输入是512个1×1的特色图。上面的网络负责提取图像背景特色,预训练模型用的是场景分类模型places365,输出是224×224的彩色图片,输入同样是是512个1×1的特色图。而后将两个输入flatten后拼接成一个1024的向量,通过两层全连贯层后输入一个26维的向量和一个3维的向量,26维向量解决26个离散感情的分类工作,3维向量则是3个间断情感的回归工作。

import torch import torch.nn as nn class Emotic(nn.Module):  ''' Emotic Model'''  def __init__(self, num_context_features, num_body_features):    super(Emotic,self).__init__()    self.num_context_features = num_context_features    self.num_body_features = num_body_features    self.fc1 = nn.Linear((self.num_context_features + num_body_features), 256)    self.bn1 = nn.BatchNorm1d(256)    self.d1 = nn.Dropout(p=0.5)    self.fc_cat = nn.Linear(256, 26)    self.fc_cont = nn.Linear(256, 3)    self.relu = nn.ReLU()      def forward(self, x_context, x_body):    context_features = x_context.view(-1, self.num_context_features)    body_features = x_body.view(-1, self.num_body_features)    fuse_features = torch.cat((context_features, body_features), 1)    fuse_out = self.fc1(fuse_features)    fuse_out = self.bn1(fuse_out)    fuse_out = self.relu(fuse_out)    fuse_out = self.d1(fuse_out)        cat_out = self.fc_cat(fuse_out)    cont_out = self.fc_cont(fuse_out)    return cat_out, cont_out

离散感情是一个多分类工作,即一个人可能同时存在多种感情,作者的解决办法是手动设定26个阈值对应26种情感,输入值大于阈值就认为该人有对应情感,阈值如下,能够看到engagement对应阈值为0,也就是说每个人每次辨认都会蕴含这种情感:

>>> import numpy as np>>> np.load('./debug_exp/results/val_thresholds.npy')array([0.0509765 , 0.02937193, 0.03467856, 0.16765128, 0.0307672 ,       0.13506265, 0.03581731, 0.06581657, 0.03092133, 0.04115443,       0.02678059, 0.        , 0.04085711, 0.14374524, 0.03058549,       0.02580678, 0.23389584, 0.13780132, 0.07401864, 0.08617007,       0.03372583, 0.03105414, 0.029326  , 0.03418647, 0.03770866,       0.03943525], dtype=float32)

4.2 损失函数:

对于分类工作,作者提供了两种损失函数,一种是一般的均方误差损失函数(即self.weight_type == 'mean'),另一种是加权平方误差损失函数(即self.weight_type == 'static‘)。其中,加权平方误差损失函数如下,26个类别对应的权重别离为[0.1435, 0.1870, 0.1692, 0.1165, 0.1949, 0.1204, 0.1728, 0.1372, 0.1620, 0.1540, 0.1987, 0.1057, 0.1482, 0.1192, 0.1590, 0.1929, 0.1158, 0.1907, 0.1345, 0.1307, 0.1665, 0.1698, 0.1797, 0.1657, 0.1520, 0.1537]。

class DiscreteLoss(nn.Module):  ''' Class to measure loss between categorical emotion predictions and labels.'''  def __init__(self, weight_type='mean', device=torch.device('cpu')):    super(DiscreteLoss, self).__init__()    self.weight_type = weight_type    self.device = device    if self.weight_type == 'mean':      self.weights = torch.ones((1,26))/26.0      self.weights = self.weights.to(self.device)    elif self.weight_type == 'static':      self.weights = torch.FloatTensor([0.1435, 0.1870, 0.1692, 0.1165, 0.1949, 0.1204, 0.1728, 0.1372, 0.1620,         0.1540, 0.1987, 0.1057, 0.1482, 0.1192, 0.1590, 0.1929, 0.1158, 0.1907,         0.1345, 0.1307, 0.1665, 0.1698, 0.1797, 0.1657, 0.1520, 0.1537]).unsqueeze(0)      self.weights = self.weights.to(self.device)      def forward(self, pred, target):    if self.weight_type == 'dynamic':      self.weights = self.prepare_dynamic_weights(target)      self.weights = self.weights.to(self.device)    loss = (((pred - target)**2) * self.weights)    return loss.sum()   def prepare_dynamic_weights(self, target):    target_stats = torch.sum(target, dim=0).float().unsqueeze(dim=0).cpu()    weights = torch.zeros((1,26))    weights[target_stats != 0 ] = 1.0/torch.log(target_stats[target_stats != 0].data + 1.2)    weights[target_stats == 0] = 0.0001    return weights

对于回归工作,作者同样提供了两种损失函数,L2损失函数:

class ContinuousLoss_L2(nn.Module):  ''' Class to measure loss between continuous emotion dimension predictions and labels. Using l2 loss as base. '''  def __init__(self, margin=1):    super(ContinuousLoss_L2, self).__init__()    self.margin = margin    def forward(self, pred, target):    labs = torch.abs(pred - target)    loss = labs ** 2     loss[ (labs < self.margin) ] = 0.0    return loss.sum()class ContinuousLoss_SL1(nn.Module):  ''' Class to measure loss between continuous emotion dimension predictions and labels. Using smooth l1 loss as base. '''  def __init__(self, margin=1):    super(ContinuousLoss_SL1, self).__init__()    self.margin = margin    def forward(self, pred, target):    labs = torch.abs(pred - target)    loss = 0.5 * (labs ** 2)    loss[ (labs > self.margin) ] = labs[ (labs > self.margin) ] - 0.5    return loss.sum()

数据集链接:https://gas.graviti.com/datas...

[1]Kosti R, Alvarez J M, Recasens A, et al. Context based emotion recognition using emotic dataset[J]. IEEE transactions on pattern analysis and machine intelligence, 2019, 42(11): 2755-2766.

YOLOv5我的项目地址:https://github.com/ultralytic...

Emotic我的项目地址:https://github.com/Tandon-A/e...

更多信息请拜访格物钛智能科技官网