简略说:findimage我的项目的find_template
和find_all_template
办法,都新增了一个参数:autoscale
。
示意是否主动缩放im_template来查找匹配,如果为None示意不缩放,如果须要缩放,那么传一个tuple:(min_scale, max_scale, step),其中min_scale和max_scale别离是缩放倍数的上限和下限,都是小数,min_scale介于0~1之间,max_scale大于1, step示意从min尝试到max之间的步长, 默认为0.1。
示例
指标
还是在下图中,查找符号'#':
传入的模板图是:
办法
能够看出显著比源图中的#要大,如果间接匹配,是找不到后果的,但应用autoscale参数之后:
from cv2 import cv2import timefrom findimage import find_all_templateimage_origin = cv2.imread('seg_course_menu.png')image_template = cv2.imread('seg_sharp_resize_1.5.png')start_time = time.time()match_results = find_all_template(image_origin, image_template, threshold=0.8, auto_scale=(0.6, 1.2), debug=True)print("total time: {}".format(time.time() - start_time))img_result = image_origin.copy()for match_result in match_results: rect = match_result['rectangle'] cv2.rectangle(img_result, (rect[0][0], rect[0][1]), (rect[3][0], rect[3][1]), (0, 0, 220), 2) print(match_result)cv2.imwrite('result.png', img_result)
后果
能够看到查找后果图像:
所有的#都被找到了。如果咱们查看控制台输入:
try resize template in scale 0.7 to find matchmatchTemplate time: 0.004000186920166016find max time: 0.0009999275207519531found 7 results, top confidence is:0.9912415146827698total time: 0.05300307273864746{'result': (45.5, 266.5), 'rectangle': ((36, 257), (36, 276), (55, 257), (55, 276)), 'confidence': 0.9912415146827698}{'result': (45.5, 146.5), 'rectangle': ((36, 137), (36, 156), (55, 137), (55, 156)), 'confidence': 0.9912384152412415}{'result': (45.5, 226.5), 'rectangle': ((36, 217), (36, 236), (55, 217), (55, 236)), 'confidence': 0.9912384152412415}{'result': (45.5, 306.5), 'rectangle': ((36, 297), (36, 316), (55, 297), (55, 316)), 'confidence': 0.9912353157997131}{'result': (45.5, 346.5), 'rectangle': ((36, 337), (36, 356), (55, 337), (55, 356)), 'confidence': 0.9912353157997131}{'result': (45.5, 186.5), 'rectangle': ((36, 177), (36, 196), (55, 177), (55, 196)), 'confidence': 0.99123215675354}{'result': (45.5, 386.5), 'rectangle': ((36, 377), (36, 396), (55, 377), (55, 396)), 'confidence': 0.99123215675354}
能够看到是在缩放到0.7倍的时候,输入了查找后果,并且每个地位的匹配度都大于0.9。